Not enough data to create a plot.
Try a different view from the menu above.
SG P: A Sorghum Genotype Phenotype Prediction Dataset and Benchmark
A.1 Additional Metadata For all RGB and 3D scanner images used in the SG P Benchmark, we provide additional metadata that Benchmark participants are encouraged to explore using in their approaches. This metadata includes: filepath (str): The full filepath for the file in the dataset. A sorghum subpopulation refers to a distinct and identifiable group within the larger sorghum plant species (Sorghum bicolor) that exhibits specific genetic, morphological, or ecological characteristics setting it apart from other groups within the same species. These characteristics can include variations in traits such as plant height, grain color, flowering time, disease resistance, and adaptations to specific environmental conditions, and participants in the SGxP Benchmark may want to incorporate this information in their methodology or analysis. A cultivar, short for "cultivated variety," is a distinct and deliberately bred cultivated plant variety that exhibits specific characteristics such as growth habits, yield potential, disease resistance, and other desirable traits. Cultivars are developed through selective breeding or genetic manipulation to enhance certain features, making them wellsuited for particular agricultural or horticultural purposes.
SG P: A Sorghum Genotype Phenotype Prediction Dataset and Benchmark
Large scale field-phenotyping approaches have the potential to solve important questions about the relationship of plant genotype to plant phenotype. Computational approaches to measuring the phenotype (the observable plant features) are required to address the problem at a large scale, but machine learning approaches to extract phenotypes from sensor data struggle without access to (a) sufficiently large, organized multi-sensor datasets, (b) field trials that have a large scale and significant number of genotypes, (c) full genetic sequencing of those phenotypes, and (d) datasets sufficiently organized so that algorithm centered researchers can directly address the real biological problems. Here, we present SG P, a novel benchmark dataset from a large-scale field trial consisting of the complete genotype of over 300 sorghum varieties, and time sequences of imagery from several field plots growing each variety, taken with RGB and laser 3D scanner imaging. To lower the barrier to entry and facilitate further developments, we provide a set of well organized, multi-sensor imagery and corresponding genomic data. We implement baseline deep learning based phenotyping approaches to create baseline results for individual sensors and multi-sensor fusion for detecting genetic mutations with known impacts. We also provide and support an open-ended challenge by identifying thousands of genetic mutations whose phenotypic impacts are currently unknown. A web interface for machine learning researchers and practitioners to share approaches, visualizations and hypotheses supports engagement with plant biologists to further the understanding of the sorghum genotype phenotype relationship. The full dataset, leaderboard (including baseline results) and discussion forums can be found at http://sorghumsnpbenchmark.com.
Aligning Diffusion Models by Optimizing Human Utility
We present Diffusion-KTO, a novel approach for aligning text-to-image diffusion models by formulating the alignment objective as the maximization of expected human utility. Unlike previous methods, Diffusion-KTO does not require collecting pairwise preference data nor training a complex reward model. Instead, our objective uses per-image binary feedback signals, e.g.
Pedestrian-Centric 3D Pre-collision Pose and Shape Estimation from Dashcam Perspective
Pedestrian pre-collision pose is one of the key factors to determine the degree of pedestrian-vehicle injury in collision. Human pose estimation algorithm is an effective method to estimate pedestrian emergency pose from accident video. However, the pose estimation model trained by the existing daily human pose datasets has poor robustness under specific poses such as pedestrian pre-collision pose, and it is difficult to obtain human pose datasets in the wild scenes, especially lacking scarce data such as pedestrian pre-collision pose in traffic scenes. In this paper, we collect pedestrian-vehicle collision pose from the dashcam perspective of dashcam and construct the first Pedestrian-Vehicle Collision Pose dataset (PVCP) in a semi-automatic way, including 40k+ accident frames and 20K+ pedestrian pre-collision pose annotation (2D, 3D, Mesh). Further, we construct a Pedestrian Pre-collision Pose Estimation Network (PPSENet) to estimate the collision pose and shape sequence of pedestrians from pedestrian-vehicle accident videos. The PPSENet first estimates the 2D pose from the image (Image to Pose, ITP) and then lifts the 2D pose to 3D mesh (Pose to Mesh, PTM). Due to the small size of the dataset, we introduce a pre-training model that learns the human pose prior on a large number of pose datasets, and use iterative regression to estimate the pre-collision pose and shape of pedestrians. Further, we classify the pre-collision pose sequence and introduce pose class loss, which achieves the best accuracy compared with the existing relevant state-of-the-art methods. Code and data are available for research at https://github.com/wmj142326/PVCP.
MKOR: Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates
This work proposes a Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates, called MKOR, that improves the training time and convergence properties of deep neural networks (DNNs). Second-order techniques, while enjoying higher convergence rates vs first-order counterparts, have cubic complexity with respect to either the model size and/or the training batch size.
MKOR: Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates
This work proposes a Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates, called MKOR, that improves the training time and convergence properties of deep neural networks (DNNs). Second-order techniques, while enjoying higher convergence rates vs first-order counterparts, have cubic complexity with respect to either the model size and/or the training batch size.