Not enough data to create a plot.
Try a different view from the menu above.
Large Margin Discriminant Dimensionality Reduction in Prediction Space
Mohammad Saberian, Jose Costa Pereira, Nuno Nvasconcelos, Can Xu
In this paper we establish a duality between boosting and SVM, and use this to derive a novel discriminant dimensionality reduction algorithm. In particular, using the multiclass formulation of boosting and SVM we note that both use a combination of mapping and linear classification to maximize the multiclass margin. In SVM this is implemented using a pre-defined mapping (induced by the kernel) and optimizing the linear classifiers. In boosting the linear classifiers are pre-defined and the mapping (predictor) is learned through a combination of weak learners. We argue that the intermediate mapping, i.e. boosting predictor, is preserving the discriminant aspects of the data and that by controlling the dimension of this mapping it is possible to obtain discriminant low dimensional representations for the data. We use the aforementioned duality and propose a new method, Large Margin Discriminant Dimensionality Reduction (LADDER) that jointly learns the mapping and the linear classifiers in an efficient manner. This leads to a data-driven mapping which can embed data into any number of dimensions. Experimental results show that this embedding can significantly improve performance on tasks such as hashing and image/scene classification.
E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation
Deep neural networks have evolved as the leading approach in 3D medical image segmentation due to their outstanding performance. However, the ever-increasing model size and computational cost of deep neural networks have become the primary barriers to deploying them on real-world, resource-limited hardware. To achieve both segmentation accuracy and efficiency, we propose a 3D medical image segmentation model called Efficient to Efficient Network (E2ENet), which incorporates two parametrically and computationally efficient designs.
Learning Parametric Sparse Models for Image Super-Resolution
Yongbo Li, Weisheng Dong, Xuemei Xie, GUANGMING Shi, Xin Li, Donglai Xu
Learning accurate prior knowledge of natural images is of great importance for single image super-resolution (SR). Existing SR methods either learn the prior from the low/high-resolution patch pairs or estimate the prior models from the input low-resolution (LR) image. Specifically, high-frequency details are learned in the former methods. Though effective, they are heuristic and have limitations in dealing with blurred LR images; while the latter suffers from the limitations of frequency aliasing. In this paper, we propose to combine those two lines of ideas for image super-resolution. More specifically, the parametric sparse prior of the desirable high-resolution (HR) image patches are learned from both the input low-resolution (LR) image and a training image dataset. With the learned sparse priors, the sparse codes and thus the HR image patches can be accurately recovered by solving a sparse coding problem. Experimental results show that the proposed SR method outperforms existing state-of-the-art methods in terms of both subjective and objective image qualities.
Ukraine's 'Spider's Web' drone strike burns over 40 Russian warplanes, Moscow calls it 'terrorist attack'
Fox News senior White House correspondent Peter Doocy questions President Donald Trump about the Russia-Ukraine war. The brazen Ukrainian blitz of Russian warplanes Sunday was 18 months in the making and the Pentagon was kept in the dark until it was over, sources told Fox News. "Operation Spider's Web," a series of coordinated drone strikes penetrating deep into Russian territory, is believed to have taken out dozens of Russia's most powerful bomber jets and surveillance planes as they sat idle on five military airfields. The stunning operation was personally overseen by President Volodymyr Zelensky, Ukraine's security service (SBU) said. Ukraine used small FPV drones hidden inside wooden cabins mounted on trucks.
Point-PRC: A Prompt Learning Based Regulation Framework for Generalizable Point Cloud Analysis Hongyu Sun 1,2 Yongcai Wang 1 Wang Chen 1
This paper investigates the 3D domain generalization (3DDG) ability of large 3D models based on prevalent prompt learning. Recent works demonstrate the performances of 3D point cloud recognition can be boosted remarkably by parameterefficient prompt tuning. However, we observe that the improvement on downstream tasks comes at the expense of a severe drop in 3D domain generalization. To resolve this challenge, we present a comprehensive regulation framework that allows the learnable prompts to actively interact with the well-learned general knowledge in large 3D models to maintain good generalization. Specifically, the proposed framework imposes multiple explicit constraints on the prompt learning trajectory by maximizing the mutual agreement between task-specific predictions and task-agnostic knowledge.
Exploring the Role of Large Language Models in Prompt Encoding for Diffusion Models
Large language models (LLMs) based on decoder-only transformers have demonstrated superior text understanding capabilities compared to CLIP and T5-series models. However, the paradigm for utilizing current advanced LLMs in textto-image diffusion models remains to be explored. We observed an unusual phenomenon: directly using a large language model as the prompt encoder significantly degrades the prompt-following ability in image generation. We identified two main obstacles behind this issue. One is the misalignment between the next token prediction training in LLM and the requirement for discriminative prompt features in diffusion models.
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors
Diffusion models (DMs) have recently shown outstanding capabilities in modeling complex image distributions, making them expressive image priors for solving Bayesian inverse problems. However, most existing DM-based methods rely on approximations in the generative process to be generic to different inverse problems, leading to inaccurate sample distributions that deviate from the target posterior defined within the Bayesian framework. To harness the generative power of DMs while avoiding such approximations, we propose a Markov chain Monte Carlo algorithm that performs posterior sampling for general inverse problems by reducing it to sampling the posterior of a Gaussian denoising problem. Crucially, we leverage a general DM formulation as a unified interface that allows for rigorously solving the denoising problem with a range of state-of-the-art DMs. We demonstrate the effectiveness of the proposed method on six inverse problems (three linear and three nonlinear), including a real-world black hole imaging problem. Experimental results indicate that our proposed method offers more accurate reconstructions and posterior estimation compared to existing DM-based imaging inverse methods.
Sigmoid Gating is More Sample Efficient than Softmax Gating in Mixture of Experts Huy Nguyen Nhat Ho Department of Statistics and Data Sciences, The University of Texas at Austin
The softmax gating function is arguably the most popular choice in mixture of experts modeling. Despite its widespread use in practice, the softmax gating may lead to unnecessary competition among experts, potentially causing the undesirable phenomenon of representation collapse due to its inherent structure. In response, the sigmoid gating function has been recently proposed as an alternative and has been demonstrated empirically to achieve superior performance. However, a rigorous examination of the sigmoid gating function is lacking in current literature. In this paper, we verify theoretically that the sigmoid gating, in fact, enjoys a higher sample efficiency than the softmax gating for the statistical task of expert estimation. Towards that goal, we consider a regression framework in which the unknown regression function is modeled as a mixture of experts, and study the rates of convergence of the least squares estimator under the over-specified case in which the number of fitted experts is larger than the true value. We show that two gating regimes naturally arise and, in each of them, we formulate an identifiability condition for the expert functions and derive the corresponding convergence rates. In both cases, we find that experts formulated as feed-forward networks with commonly used activation such as ReLU and GELU enjoy faster convergence rates under the sigmoid gating than those under softmax gating. Furthermore, given the same choice of experts, we demonstrate that the sigmoid gating function requires a smaller sample size than its softmax counterpart to attain the same error of expert estimation and, therefore, is more sample efficient.
Launch and Iterate: Reducing Prediction Churn
Mahdi Milani Fard, Quentin Cormier, Kevin Canini, Maya Gupta
Practical applications of machine learning often involve successive training iterations with changes to features and training examples. Ideally, changes in the output of any new model should only be improvements (wins) over the previous iteration, but in practice the predictions may change neutrally for many examples, resulting in extra net-zero wins and losses, referred to as unnecessary churn. These changes in the predictions are problematic for usability for some applications, and make it harder and more expensive to measure if a change is statistically significant positive. In this paper, we formulate the problem and present a stabilization operator to regularize a classifier towards a previous classifier. We use a Markov chain Monte Carlo stabilization operator to produce a model with more consistent predictions without adversely affecting accuracy. We investigate the properties of the proposal with theoretical analysis. Experiments on benchmark datasets for different classification algorithms demonstrate the method and the resulting reduction in churn.