Plotting

SAFE: Slow and Fast Parameter-Efficient Tuning for Continual Learning with Pre-Trained Models

Neural Information Processing Systems

Continual learning aims to incrementally acquire new concepts in data streams while resisting forgetting previous knowledge. With the rise of powerful pre-trained models (PTMs), there is a growing interest in training incremental learning systems using these foundation models, rather than learning from scratch. Existing works often view PTMs as a strong initial point and directly apply parameter-efficient tuning (PET) in the first session for adapting to downstream tasks.


Copycats: the many lives of a publicly available medical imaging dataset Amelia Jimรฉnez-Sรกnchez 1

Neural Information Processing Systems

Medical Imaging (MI) datasets are fundamental to artificial intelligence in healthcare. The accuracy, robustness, and fairness of diagnostic algorithms depend on the data (and its quality) used to train and evaluate the models. MI datasets used to be proprietary, but have become increasingly available to the public, including on community-contributed platforms (CCPs) like Kaggle or HuggingFace. While open data is important to enhance the redistribution of data's public value, we find that the current CCP governance model fails to uphold the quality needed and recommended practices for sharing, documenting, and evaluating datasets. In this paper, we conduct an analysis of publicly available machine learning datasets on CCPs, discussing datasets' context, and identifying limitations and gaps in the current CCP landscape. We highlight differences between MI and computer vision datasets, particularly in the potentially harmful downstream effects from poor adoption of recommended dataset management practices. We compare the analyzed datasets across several dimensions, including data sharing, data documentation, and maintenance. We find vague licenses, lack of persistent identifiers and storage, duplicates, and missing metadata, with differences between the platforms. Our research contributes to efforts in responsible data curation and AI algorithms for healthcare.


Stochastic Optimal Control Matching

Neural Information Processing Systems

Stochastic optimal control, which has the goal of driving the behavior of noisy systems, is broadly applicable in science, engineering and artificial intelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic optimal control that stems from the same philosophy as the conditional score matching loss for diffusion models. That is, the control is learned via a least squares problem by trying to fit a matching vector field. The training loss, which is closely connected to the cross-entropy loss, is optimized with respect to both the control function and a family of reparameterization matrices which appear in the matching vector field. The optimization with respect to the reparameterization matrices aims at minimizing the variance of the matching vector field. Experimentally, our algorithm achieves lower error than all the existing IDO techniques for stochastic optimal control for three out of four control problems, in some cases by an order of magnitude. The key idea underlying SOCM is the path-wise reparameterization trick, a novel technique that may be of independent interest.


Prediction with Action: Visual Policy Learning via Joint Denoising Process

Neural Information Processing Systems

Diffusion models have demonstrated remarkable capabilities in image generation tasks, including image editing and video creation, representing a good understanding of the physical world. On the other line, diffusion models have also shown promise in robotic control tasks by denoising actions, known as diffusion policy. Although the diffusion generative model and diffusion policy exhibit distinct capabilities--image prediction and robotic action, respectively--they technically follow a similar denoising process. In robotic tasks, the ability to predict future images and generate actions is highly correlated since they share the same underlying dynamics of the physical world. Building on this insight, we introduce PAD, a novel visual policy learning framework that unifies image Prediction and robot Action within a joint Denoising process. Specifically, PAD utilizes Diffusion Transformers (DiT) to seamlessly integrate images and robot states, enabling the simultaneous prediction of future images and robot actions. Additionally, PAD supports co-training on both robotic demonstrations and large-scale video datasets and can be easily extended to other robotic modalities, such as depth images. PAD outperforms previous methods, achieving a significant 26.3% relative improvement on the full Metaworld benchmark, by utilizing a single text-conditioned visual policy within a data-efficient imitation learning setting. Furthermore, PAD demonstrates superior generalization to unseen tasks in real-world robot manipulation settings with 28.0% success rate increase compared to the strongest baseline.


Random Function Descent

Neural Information Processing Systems

Classical worst-case optimization theory neither explains the success of optimization in machine learning, nor does it help with step size selection. In this paper we demonstrate the viability and advantages of replacing the classical'convex function' framework with a'random function' framework.


RG-SAN: Rule-Guided Spatial Awareness Network for End-to-End 3D Referring Expression Segmentation

Neural Information Processing Systems

However, traditional approaches frequently encounter issues like over-segmentation or mis-segmentation, due to insufficient emphasis on spatial information of instances. In this paper, we introduce a Rule-Guided Spatial Awareness Network (RG-SAN) by utilizing solely the spatial information of the target instance for supervision. This approach enables the network to accurately depict the spatial relationships among all entities described in the text, thus enhancing the reasoning capabilities. The RG-SAN consists of the Text-driven Localization Module (TLM) and the Rule-guided Weak Supervision (RWS) strategy. The TLM initially locates all mentioned instances and iteratively refines their positional information. The RWS strategy, acknowledging that only target objects have supervised positional information, employs dependency tree rules to precisely guide the core instance's positioning. Extensive testing on the ScanRefer benchmark has shown that RG-SAN not only establishes new performance benchmarks, with an mIoU increase of 5.1 points, but also exhibits significant improvements in robustness when processing descriptions with spatial ambiguity. All codes are available at https://github.com/sosppxo/RG-SAN.


Towards Data-Algorithm Dependent Generalization: a Case Study on Overparameterized Linear Regression

Neural Information Processing Systems

One of the major open problems in machine learning is to characterize generalization in the overparameterized regime, where most traditional generalization bounds become inconsistent even for overparameterized linear regression [46]. In many scenarios, this failure can be attributed to obscuring the crucial interplay between the training algorithm and the underlying data distribution. This paper demonstrate that the generalization behavior of overparameterized model should be analyzed in a both data-relevant and algorithm-relevant manner. To make a formal characterization, We introduce a notion called data-algorithm compatibility, which considers the generalization behavior of the entire data-dependent training trajectory, instead of traditional last-iterate analysis.


LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language

Neural Information Processing Systems

Machine learning practitioners often face significant challenges in formally integrating their prior knowledge and beliefs into predictive models, limiting the potential for nuanced and context-aware analyses. Moreover, the expertise needed to integrate this prior knowledge into probabilistic modeling typically limits the application of these models to specialists. Our goal is to build a regression model that can process numerical data and make probabilistic predictions at arbitrary locations, guided by natural language text which describes a user's prior knowledge. Large Language Models (LLMs) provide a useful starting point for designing such a tool since they 1) provide an interface where users can incorporate expert insights in natural language and 2) provide an opportunity for leveraging latent problem-relevant knowledge encoded in LLMs that users may not have themselves. We start by exploring strategies for eliciting explicit, coherent numerical predictive distributions from LLMs. We examine these joint predictive distributions, which we call LLM Processes, over arbitrarily-many quantities in settings such as forecasting, multi-dimensional regression, black-box optimization, and image modeling. We investigate the practical details of prompting to elicit coherent predictive distributions, and demonstrate their effectiveness at regression. Finally, we demonstrate the ability to usefully incorporate text into numerical predictions, improving predictive performance and giving quantitative structure that reflects qualitative descriptions. This lets us begin to explore the rich, grounded hypothesis space that LLMs implicitly encode.


Virtual Scanning: Unsupervised Non-line-of-sight Imaging from Irregularly Undersampled Transients Huanjing Yue 1 Song Li2,3 Xiangjun Yin

Neural Information Processing Systems

Non-line-of-sight (NLOS) imaging allows for seeing hidden scenes around corners through active sensing. Most previous algorithms for NLOS reconstruction require dense transients acquired through regular scans over a large relay surface, which limits their applicability in realistic scenarios with irregular relay surfaces. In this paper, we propose an unsupervised learning-based framework for NLOS imaging from irregularly undersampled transients (IUT). Our method learns implicit priors from noisy irregularly undersampled transients without requiring paired data, which is difficult and expensive to acquire and align. To overcome the ambiguity of the measurement consistency constraint in inferring the albedo volume, we design a virtual scanning process that enables the network to learn within both range space and null space for high-quality reconstruction. We devise a physics-guided SUREbased denoiser to enhance robustness to ubiquitous noise in low-photon imaging conditions.