Plotting

TradeMaster Appendix

Neural Information Processing Systems

Is there a label or target associated with each instance? No, there is no label or target associated with each instance as our focus is not supervised learning settings. Is any information missing from individual instances? Yes, it is common to have missing values in financial datasets. We provide scripts to preprocess and conduct data imputation with diffusion models [26]. Are relationships between individual instances made explicit?


3D Gaussian Splatting as Markov Chain Monte Carlo

Neural Information Processing Systems

While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene--in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) update by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.


A Boosting-Type Convergence Result for A.MH with Factorized Multi-Class Classifiers

Neural Information Processing Systems

Boosting is an approach to machine learning based on the idea of creating a highly accurate prediction rule by combining many relatively weak and inaccurate rules [19] and has inspired a lot on theoretical analysis and algorithm design in supervised learning [11, 17].


Humanoid Locomotion as Next Token Prediction

Neural Information Processing Systems

We cast real-world humanoid control as a next token prediction problem, akin to predicting the next word in language. Our model is a causal transformer trained via autoregressive prediction of sensorimotor sequences. To account for the multimodal nature of the data, we perform prediction in a modality-aligned way, and for each input token predict the next token from the same modality. This general formulation enables us to leverage data with missing modalities, such as videos without actions. We train our model on a dataset of sequences from a prior neural network policy, a model-based controller, motion capture, and YouTube videos of humans. We show that our model enables a real humanoid robot to walk in San Francisco zero-shot. Our model can transfer to the real world even when trained on only 27 hours of walking data, and can generalize to commands not seen during training. These findings suggest a promising path toward learning challenging real-world control tasks by generative modeling of sensorimotor sequences.


Deep Multi-Marginal Momentum Schrรถdinger Bridge

Neural Information Processing Systems

It is a crucial challenge to reconstruct population dynamics using unlabeled samples from distributions at coarse time intervals. Recent approaches such as flowbased models or Schrรถdinger Bridge (SB) models have demonstrated appealing performance, yet the inferred sample trajectories either fail to account for the underlying stochasticity or are unnecessarily rigid. In this article, We extend the approach in [1] to operate in continuous space and propose Deep Momentum Multi-Marginal Schrรถdinger Bridge (DMSB), a novel computational framework that learns the smooth measure-valued spline for stochastic systems that satisfy position marginal constraints across time. By tailoring the celebrated Bregman Iteration and extending the Iteration Proportional Fitting to phase space, we manage to handle high-dimensional multi-marginal trajectory inference tasks efficiently. Our algorithm outperforms baselines significantly, as evidenced by experiments for synthetic datasets and a real-world single-cell RNA sequence dataset. Additionally, the proposed approach can reasonably reconstruct the evolution of velocity distribution, from position snapshots only, when there is a ground truth velocity that is nevertheless inaccessible.


Brain-like Flexible Visual Inference by Harnessing Feedback-Feedforward Alignment

Neural Information Processing Systems

In natural vision, feedback connections support versatile visual inference capabilities such as making sense of the occluded or noisy bottom-up sensory information or mediating pure top-down processes such as imagination. However, the mechanisms by which the feedback pathway learns to give rise to these capabilities flexibly are not clear. We propose that top-down effects emerge through alignment between feedforward and feedback pathways, each optimizing its own objectives. To achieve this co-optimization, we introduce Feedback-Feedforward Alignment (FFA), a learning algorithm that leverages feedback and feedforward pathways as mutual credit assignment computational graphs, enabling alignment. In our study, we demonstrate the effectiveness of FFA in co-optimizing classification and reconstruction tasks on widely used MNIST and CIFAR10 datasets.


D: A Benchmark for LLMs on Everyday Knowledge in Diverse Cultures and Languages, Yi Zhou

Neural Information Processing Systems

Existing benchmarks for evaluating LLMs' cultural sensitivities are limited to a single language or collected from online sources such as Wikipedia, which do not reflect the mundane everyday lifestyles of diverse regions. That is, information about the food people eat for their birthday celebrations, spices they typically use, musical instruments youngsters play, or the sports they practice in school is common cultural knowledge but uncommon in easily collected online sources, especially for underrepresented cultures.


Local Anti-Concentration Class: Logarithmic Regret for Greedy Linear Contextual Bandit

Neural Information Processing Systems

We study the performance guarantees of exploration-free greedy algorithms for the linear contextual bandit problem. We introduce a novel condition, named the Local Anti-Concentration (LAC) condition, which enables a greedy bandit algorithm to achieve provable efficiency. We show that the LAC condition is satisfied by a broad class of distributions, including Gaussian, exponential, uniform, Cauchy, and Student's t distributions, along with other exponential family distributions and their truncated variants. This significantly expands the class of distributions under which greedy algorithms can perform efficiently. Under our proposed LAC condition, we prove that the cumulative expected regret of the greedy algorithm for the linear contextual bandit is bounded by O(poly log T). Our results establish the widest range of distributions known to date that allow a sublinear regret bound for greedy algorithms, further achieving a sharp poly-logarithmic regret.


Robust Fine-tuning of Zero-shot Models via Variance Reduction

Neural Information Processing Systems

When fine-tuning zero-shot models like CLIP, our desideratum is for the fine-tuned model to excel in both in-distribution (ID) and out-of-distribution (OOD). Recently, ensemble-based models (ESM) have been shown to offer significant robustness improvement, while preserving high ID accuracy. However, our study finds that ESMs do not solve the ID-OOD trade-offs: they achieve peak performance for ID and OOD accuracy at different mixing coefficients. When optimized for OOD accuracy, the ensemble model exhibits a noticeable decline in ID accuracy, and vice versa. In contrast, we propose a sample-wise ensembling technique that can simultaneously attain the best ID and OOD accuracy without the trade-offs.


Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias Yue Yu

Neural Information Processing Systems

Large language models (LLMs) have been recently leveraged as training data generators for various natural language processing (NLP) tasks. While previous research has explored different approaches to training models using generated data, they generally rely on simple class-conditional prompts, which may limit the diversity of the generated data and inherit systematic biases of LLM. Thus, we investigate training data generation with diversely attributed prompts (e.g., specifying attributes like length and style), which have the potential to yield diverse and attributed generated data. Our investigation focuses on datasets with high cardinality and diverse domains, wherein we demonstrate that attributed prompts outperform simple class-conditional prompts in terms of the resulting model's performance.