Plotting

An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement

Neural Information Processing Systems

As societal awareness of climate change grows, corporate climate policy engagements are attracting attention. We propose a dataset to estimate corporate climate policy engagement from various PDF-formatted documents. Our dataset comes from LobbyMap (a platform operated by global think tank InfluenceMap) that provides engagement categories and stances on the documents. To convert the LobbyMap data into the structured dataset, we developed a pipeline using text extraction and OCR. Our contributions are: (i) Building an NLP dataset including 10K documents on corporate climate policy engagement.


A Foundation Model for Zero-shot Logical Query Reasoning

Neural Information Processing Systems

Complex logical query answering (CLQA) in knowledge graphs (KGs) goes beyond simple KG completion and aims at answering compositional queries comprised of multiple projections and logical operations. Existing CLQA methods that learn parameters bound to certain entity or relation vocabularies can only be applied to the graph they are trained on which requires substantial training time before being deployed on a new graph.


Supplementary Material for " AllClear: A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery "

Neural Information Processing Systems

In Sec. 2 we include a The data is publicly available at https://allclear.cs.cornell.edu. We include a datasheet for our dataset following the methodology from "Datasheets for Datasets" Gebru In this section, we include the prompts from Gebru et al. [2021] in blue, and in For what purpose was the dataset created? Was there a specific task in mind? The dataset was created to facilitate research development on cloud removal in satellite imagery. Specifically, our task is more temporally aligned than previous benchmarks.


Dog owners who ruminate about work stress may pass anxiety to their pooch: study

FOX News

Petco Love Lost is a free platform that uses AI-powered photo matching to reunite lost pets with their families. If your job has you feeling tense, your dog might be feeling it too. A new study published in Scientific Reports finds that stress from work can affect your dog at home. The research, led by Tanya Mitropoulos and Allison Andrukonis, shows that when dog owners dwell on work problems after hours, a habit known as "work-related rumination," their pets show more signs of stress. Researchers surveyed 85 working dog owners.


G3: An Effective and Adaptive Framework for Worldwide Geolocalization Using Large Multi-Modality Models

Neural Information Processing Systems

Worldwide geolocalization aims to locate the precise location at the coordinate level of photos taken anywhere on the Earth. It is very challenging due to 1) the difficulty of capturing subtle location-aware visual semantics, and 2) the heterogeneous geographical distribution of image data. As a result, existing studies have clear limitations when scaled to a worldwide context. They may easily confuse distant images with similar visual contents, or cannot adapt to various locations worldwide with different amounts of relevant data. To resolve these limitations, we propose G3, a novel framework based on Retrieval-Augmented Generation (RAG).


Graph Convolutions Enrich the Self-Attention in Transformers!

Neural Information Processing Systems

Transformers, renowned for their self-attention mechanism, have achieved state-ofthe-art performance across various tasks in natural language processing, computer vision, time-series modeling, etc. However, one of the challenges with deep Transformer models is the oversmoothing problem, where representations across layers converge to indistinguishable values, leading to significant performance degradation. We interpret the original self-attention as a simple graph filter and redesign it from a graph signal processing (GSP) perspective.


LF-Net: Learning Local Features from Images

Neural Information Processing Systems

We present a novel deep architecture and a training strategy to learn a local feature pipeline from scratch, using collections of images without the need for human supervision. To do so we exploit depth and relative camera pose cues to create a virtual target that the network should achieve on one image, provided the outputs of the network for the other image. While this process is inherently non-differentiable, we show that we can optimize the network in a two-branch setup by confining it to one branch, while preserving differentiability in the other. We train our method on both indoor and outdoor datasets, with depth data from 3D sensors for the former, and depth estimates from an off-the-shelf Structure-from-Motion solution for the latter. Our models outperform the state of the art on sparse feature matching on both datasets, while running at 60+ fps for QVGA images.


Improving Adaptivity via Over-Parameterization in Sequence Models

Neural Information Processing Systems

It is well known that eigenfunctions of a kernel play a crucial role in kernel regression. Through several examples, we demonstrate that even with the same set of eigenfunctions, the order of these functions significantly impacts regression outcomes. Simplifying the model by diagonalizing the kernel, we introduce an over-parameterized gradient descent in the realm of sequence model to capture the effects of various orders of a fixed set of eigen-functions. This method is designed to explore the impact of varying eigenfunction orders. Our theoretical results show that the over-parameterization gradient flow can adapt to the underlying structure of the signal and significantly outperform the vanilla gradient flow method. Moreover, we also demonstrate that deeper over-parameterization can further enhance the generalization capability of the model. These results not only provide a new perspective on the benefits of over-parameterization and but also offer insights into the adaptivity and generalization potential of neural networks beyond the kernel regime.


AdvAD: Exploring Non-Parametric Diffusion for Imperceptible Adversarial Attacks

Neural Information Processing Systems

Imperceptible adversarial attacks aim to fool DNNs by adding imperceptible perturbation to the input data. Previous methods typically improve the imperceptibility of attacks by integrating common attack paradigms with specifically designed perception-based losses or the capabilities of generative models. In this paper, we propose Adversarial Attacks in Diffusion (AdvAD), a novel modeling framework distinct from existing attack paradigms.


Optimization over Continuous and Multi-dimensional Decisions with Observational Data

Neural Information Processing Systems

We consider the optimization of an uncertain objective over continuous and multidimensional decision spaces in problems in which we are only provided with observational data. We propose a novel algorithmic framework that is tractable, asymptotically consistent, and superior to comparable methods on example problems. Our approach leverages predictive machine learning methods and incorporates information on the uncertainty of the predicted outcomes for the purpose of prescribing decisions. We demonstrate the efficacy of our method on examples involving both synthetic and real data sets.