Not enough data to create a plot.
Try a different view from the menu above.
AMDP: An Adaptive Detection Procedure for False Discovery Rate Control in High-Dimensional Mediation Analysis
High-dimensional mediation analysis is often associated with a multiple testing problem for detecting significant mediators. Assessing the uncertainty of this detecting process via false discovery rate (FDR) has garnered great interest. To control the FDR in multiple testing, two essential steps are involved: ranking and selection. Existing approaches either construct p-values without calibration or disregard the joint information across tests, leading to conservation in FDR control or non-optimal ranking rules for multiple hypotheses. In this paper, we develop an adaptive mediation detection procedure (referred to as "AMDP") to identify relevant mediators while asymptotically controlling the FDR in high-dimensional mediation analysis.
FIRAL: An Active Learning Algorithm for Multinomial Logistic Regression
We investigate theory and algorithms for pool-based active learning for multiclass classification using multinomial logistic regression. Using finite sample analysis, we prove that the Fisher Information Ratio (FIR) lower and upper bounds the excess risk. Based on our theoretical analysis, we propose an active learning algorithm that employs regret minimization to minimize the FIR. To verify our derived excess risk bounds, we conduct experiments on synthetic datasets. Furthermore, we compare FIRAL with five other methods and found that our scheme outperforms them: it consistently produces the smallest classification error in the multiclass logistic regression setting, as demonstrated through experiments on MNIST, CIFAR-10, and 50-class ImageNet.
Slot-guided Volumetric Object Radiance Fields
We present a novel framework for 3D object-centric representation learning. This method, called \underline{s}lot-guided \underline{V}olumetric \underline{O}bject \underline{R}adiance \underline{F}ields (sVORF), composes volumetric object radiance fields with object slots as a guidance to implement unsupervised 3D scene decomposition. Specifically, sVORF obtains object slots from a single image via a transformer module, maps these slots to volumetric object radiance fields with a hypernetwork and composes object radiance fields with the guidance of object slots at a 3D location. Moreover, sVORF significantly reduces memory requirement due to small-sized pixel rendering during training. We demonstrate the effectiveness of our approach by showing top results in scene decomposition and generation tasks of complex synthetic datasets (e.g., Room-Diverse). Furthermore, we also confirm the potential of sVORF to segment objects in real-world scenes (e.g., the LLFF dataset).
Online Label Shift: Optimal Dynamic Regret meets Practical Algorithms
This paper focuses on supervised and unsupervised online label shift,where the class marginals Q(y) variesbut the class-conditionals Q(x y) remain invariant. In the unsupervised setting, our goal is to adapt a learner, trained on some offline labeled data, to changing label distributions given unlabeled online data. In the supervised setting, we must both learn a classifier and adapt to the dynamically evolving class marginals given only labeled online data. We develop novel algorithms that reduce the adaptation problem to online regression and guarantee optimal dynamic regret without any prior knowledge of the extent of drift in the label distribution. Our solution is based on bootstrapping the estimates of *online regression oracles* that track the drifting proportions.
Minimax Forward and Backward Learning of Evolving Tasks with Performance Guarantees
For a sequence of classification tasks that arrive over time, it is common that tasks are evolving in the sense that consecutive tasks often have a higher similarity. The incremental learning of a growing sequence of tasks holds promise to enable accurate classification even with few samples per task by leveraging information from all the tasks in the sequence (forward and backward learning). However, existing techniques developed for continual learning and concept drift adaptation are either designed for tasks with time-independent similarities or only aim to learn the last task in the sequence. This paper presents incremental minimax risk classifiers (IMRCs) that effectively exploit forward and backward learning and account for evolving tasks. In addition, we analytically characterize the performance improvement provided by forward and backward learning in terms of the tasks' expected quadratic change and the number of tasks.
TrojLLM: A Black-box Trojan Prompt Attack on Large Language Models
Large Language Models (LLMs) are progressively being utilized as machine learning services and interface tools for various applications. However, the security implications of LLMs, particularly in relation to adversarial and Trojan attacks, remain insufficiently examined. In this paper, we propose TrojLLM, an automatic and black-box framework to effectively generate universal and stealthy triggers. When these triggers are incorporated into the input data, the LLMs' outputs can be maliciously manipulated. Moreover, the framework also supports embedding Trojans within discrete prompts, enhancing the overall effectiveness and precision of the triggers' attacks. Specifically, we propose a trigger discovery algorithm for generating universal triggers for various inputs by querying victim LLM-based APIs using few-shot data samples.
ZipLM: Inference-Aware Structured Pruning of Language Models
The breakthrough performance of large language models (LLMs) comes with major computational footprints and high deployment costs. In this paper, we progress towards resolving this problem by proposing a novel structured compression approach for LLMs, called ZipLM. ZipLM achieves state-of-the-art accuracy-vs-speedup, while matching a set of desired target runtime speedups in any given inference environment. Specifically, given a model, a dataset, an inference environment, as well as a set of speedup targets, ZipLM iteratively identifies and removes components with the worst loss-runtime trade-off. Unlike prior methods that specialize in either the post-training/one-shot or the gradual compression setting, and only for specific families of models such as BERT (encoder) or GPT (decoder), ZipLM produces state-of-the-art compressed models across all these settings. Furthermore, ZipLM achieves superior results for a fraction of the computational cost relative to prior distillation and pruning techniques, making it a cost-effective approach for generating an entire family of smaller, faster, and highly accurate models, guaranteed to meet the desired inference specifications.
Derandomized novelty detection with FDR control via conformal e-values
Conformal inference provides a general distribution-free method to rigorously calibrate the output of any machine learning algorithm for novelty detection. While this approach has many strengths, it has the limitation of being randomized, in the sense that it may lead to different results when analyzing twice the same data and this can hinder the interpretation of any findings. We propose to make conformal inferences more stable by leveraging suitable conformal e-values instead of p-values to quantify statistical significance. This solution allows the evidence gathered from multiple analyses of the same data to be aggregated effectively while provably controlling the false discovery rate. Further, we show that the proposed method can reduce randomness without much loss of power compared to standard conformal inference, partly thanks to an innovative way of weighting conformal e-values based on additional side information carefully extracted from the same data.
Meta-AdaM: An Meta-Learned Adaptive Optimizer with Momentum for Few-Shot Learning
We introduce Meta-AdaM, a meta-learned adaptive optimizer with momentum, designed for few-shot learning tasks that pose significant challenges to deep learning models due to the limited number of labeled examples. Meta-learning has been successfully employed to address these challenges by transferring meta-learned prior knowledge to new tasks. Most existing works focus on meta-learning an optimal model initialization or an adaptive learning rate learner for rapid convergence. However, these approaches either neglect to consider weight-update history for the adaptive learning rate learner or fail to effectively integrate momentum for fast convergence, as seen in many-shot learning settings. To tackle these limitations, we propose a meta-learned learning rate learner that utilizes weight-update history as input to predict more appropriate learning rates for rapid convergence.
Volume Feature Rendering for Fast Neural Radiance Field Reconstruction
Neural radiance fields (NeRFs) are able to synthesize realistic novel views from multi-view images captured from distinct positions and perspectives. In NeRF's rendering pipeline, neural networks are used to represent a scene independently or transform queried learnable feature vector of a point to the expected color or density. With the aid of geometry guides either in the form of occupancy grids or proposal networks, the number of color neural network evaluations can be reduced from hundreds to dozens in the standard volume rendering framework. However, many evaluations of the color neural network are still a bottleneck for fast NeRF reconstruction. This paper revisits volume feature rendering (VFR) for the purpose of fast NeRF reconstruction.