Plotting

Model of a Biological Neuron as a Temporal Neural Network

Neural Information Processing Systems

A biological neuron can be viewed as a device that maps a multidimensional temporal event signal (dendritic postsynaptic activations) into a unidimensional temporal event signal (action potentials). We have designed a network, the Spatio-Temporal Event Mapping (STEM) architecture, which can learn to perform this mapping for arbitrary biophysical models of neurons. Such a network appropriately trained, called a STEM cell, can be used in place of a conventional compartmental model in simulations where only the transfer function is important, such as network simulations. The STEM cell offers advantages over compartmental models in terms of computational efficiency, analytical tractabili1ty, and as a framework for VLSI implementations of biological neurons.


Grammar Learning by a Self-Organizing Network

Neural Information Processing Systems

Michiro Negishi Dept. of Cognitive and Neural Systems, Boston University 111 Cummington Street Boston, MA 02215 email: negishi@cns.bu.edu Abstract This paper presents the design and simulation results of a selforganizing neural network which induces a grammar from example sentences. Input sentences are generated from a simple phrase structure grammar including number agreement, verb transitivity, and recursive noun phrase construction rules. The network induces a grammar explicitly in the form of symbol categorization rules and phrase structure rules. 1 Purpose and related works The purpose of this research is to show that a self-organizing network with a certain structure can acquire syntactic knowledge from only positive (i.e. There has been research on supervised neural network models of language acquisition tasks [Elman, 1991, Miikkulainen and Dyer, 1988, John and McClelland, 1988]. Unlike these supervised models, the current model self-organizes word and phrasal categories and phrase construction rules through mere exposure to input sentences, without any artificially defined task goals.


Visual Speech Recognition with Stochastic Networks

Neural Information Processing Systems

This paper presents ongoing work on a speaker independent visual speech recognition system. The work presented here builds on previous research efforts in this area and explores the potential use of simple hidden Markov models for limited vocabulary, speaker independent visual speech recognition. The task at hand is recognition of the first four English digits, a task with possible applications in car-phone dialing. The images were modeled as mixtures of independent Gaussian distributions, and the temporal dependencies were captured with standard left-to-right hidden Markov models. The results indicate that simple hidden Markov models may be used to successfully recognize relatively unprocessed image sequences.


Hierarchical Mixtures of Experts Methodology Applied to Continuous Speech Recognition

Neural Information Processing Systems

In this paper, we incorporate the Hierarchical Mixtures of Experts (HME) method of probability estimation, developed by Jordan [1], into an HMMbased continuous speech recognition system. The resulting system can be thought of as a continuous-density HMM system, but instead of using gaussian mixtures, the HME system employs a large set of hierarchically organized but relatively small neural networks to perform the probability density estimation. The hierarchical structure is reminiscent of a decision tree except for two important differences: each "expert" or neural net performs a "soft" decision rather than a hard decision, and, unlike ordinary decision trees, the parameters of all the neural nets in the HME are automatically trainable using the EM algorithm. We report results on the ARPA 5,OOO-word and 4O,OOO-word Wall Street Journal corpus using HME models. 1 Introduction Recent research has shown that a continuous-density HMM (CD-HMM) system can outperform a more constrained tied-mixture HMM system for large-vocabulary continuous speech recognition (CSR) when a large amount of training data is available [2]. In other work, the utility of decision trees has been demonstrated in classification problems by using the "divide and conquer" paradigm effectively, where a problem is divided into a hierarchical set of simpler problems.


Nonlinear Image Interpolation using Manifold Learning

Neural Information Processing Systems

The problem of interpolating between specified images in an image sequence is a simple, but important task in model-based vision. We describe an approach based on the abstract task of "manifold learning" and present results on both synthetic and real image sequences. This problem arose in the development of a combined lipreading and speech recognition system.


Learning to Play the Game of Chess

Neural Information Processing Systems

This paper presents NeuroChess, a program which learns to play chess from the final outcome of games. NeuroChess learns chess board evaluation functions, represented by artificial neural networks.


A Study of Parallel Perturbative Gradient Descent

Neural Information Processing Systems

Motivated by difficulties in analog VLSI implementation of back-propagation [Rumelhart et al., 1986] and related algorithms that calculate gradients based on detailed knowledge of the neural network model, there were several similar recent papers proposing to use a parallel [Alspector et al., 1993, Cauwenberghs, 1993, Kirk et al., 1993] or a semi-parallel [Flower and Jabri, 1993] perturbative technique which has the property that it measures (with the physical neural network) rather than calculates the gradient. This technique is closely related to methods of stochastic approximation [Kushner and Clark, 1978] which have been investigated recently by workers in fields other than neural networks.


Boltzmann Chains and Hidden Markov Models

Neural Information Processing Systems

Statistical models of discrete time series have a wide range of applications, most notably to problems in speech recognition (Juang & Rabiner, 1991) and molecular biology (Baldi, Chauvin, Hunkapiller, & McClure, 1992). A common problem in these fields is to find a probabilistic model, and a set of model parameters, that 436 Lawrence K. Saul, Michael I. Jordan


Instance-Based State Identification for Reinforcement Learning

Neural Information Processing Systems

This paper presents instance-based state identification, an approach to reinforcement learning and hidden state that builds disambiguating amounts of short-term memory online, and also learns with an order of magnitude fewer training steps than several previous approaches. Inspired by a key similarity between learning with hidden state and learning in continuous geometrical spaces, this approach uses instance-based (or "memory-based") learning, a method that has worked well in continuous spaces. 1 BACKGROUND AND RELATED WORK When a robot's next course of action depends on information that is hidden from the sensors because of problems such as occlusion, restricted range, bounded field of view and limited attention, the robot suffers from hidden state. More formally, we say a reinforcement learning agent suffers from the hidden state problem if the agent's state representation is non-Markovian with respect to actions and utility. The hidden state problem arises as a case of perceptual aliasing: the mapping between states of the world and sensations of the agent is not one-to-one [Whitehead, 1992]. If the agent's perceptual system produces the same outputs for two world states in which different actions are required, and if the agent's state representation consists only of its percepts, then the agent will fail to choose correct actions.


Correlation and Interpolation Networks for Real-time Expression Analysis/Synthesis

Neural Information Processing Systems

We describe a framework for real-time tracking of facial expressions that uses neurally-inspired correlation and interpolation methods. A distributed view-based representation is used to characterize facial state, and is computed using a replicated correlation network. The ensemble response of the set of view correlation scores is input to a network based interpolation method, which maps perceptual state to motor control states for a simulated 3-D face model. Activation levels of the motor state correspond to muscle activations in an anatomically derived model. By integrating fast and robust 2-D processing with 3-D models, we obtain a system that is able to quickly track and interpret complex facial motions in real-time.