Not enough data to create a plot.
Try a different view from the menu above.
SimGen: Simulator-conditioned Driving Scene Generation
Controllable synthetic data generation can substantially lower the annotation cost of training data. Prior works use diffusion models to generate driving images conditioned on the 3D object layout. However, those models are trained on smallscale datasets like nuScenes, which lack appearance and layout diversity. Moreover, overfitting often happens, where the trained models can only generate images based on the layout data from the validation set of the same dataset. In this work, we introduce a simulator-conditioned scene generation framework called SimGen that can learn to generate diverse driving scenes by mixing data from the simulator and the real world. It uses a novel cascade diffusion pipeline to address challenging sim-to-real gaps and multi-condition conflicts. A driving video dataset DIVA is collected to enhance the generative diversity of SimGen, which contains over 147.5 hours of real-world driving videos from 73 locations worldwide and simulated driving data from the MetaDrive simulator. SimGen achieves superior generation quality and diversity while preserving controllability based on the text prompt and the layout pulled from a simulator. We further demonstrate the improvements brought by SimGen for synthetic data augmentation on the BEV detection and segmentation task and showcase its capability in safety-critical data generation.
Kalman Filtering Attention for User Behavior Modeling in CTR Prediction
Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms develop different attention mechanisms to emphasize query-relevant behaviors and suppress irrelevant ones. Despite being extensively studied, these attentions still suffer from two limitations. First, conventional attentions mostly limit the attention field only to a single user's behaviors, which is not suitable in e-commerce where users often hunt for new demands that are irrelevant to any historical behaviors.
Linear Transformers are Versatile In-Context Learners
Recent research has demonstrated that transformers, particularly linear attention models, implicitly execute gradient-descent-like algorithms on data provided incontext during their forward inference step. However, their capability in handling more complex problems remains unexplored. In this paper, we prove that each layer of a linear transformer maintains a weight vector for an implicit linear regression problem and can be interpreted as performing a variant of preconditioned gradient descent. We also investigate the use of linear transformers in a challenging scenario where the training data is corrupted with different levels of noise. Remarkably, we demonstrate that for this problem linear transformers discover an intricate and highly effective optimization algorithm, surpassing or matching in performance many reasonable baselines. We analyze this algorithm and show that it is a novel approach incorporating momentum and adaptive rescaling based on noise levels. Our findings show that even linear transformers possess the surprising ability to discover sophisticated optimization strategies.
Self-Paced Deep Reinforcement Learning Pascal Klink 1, Jan Peters
Curriculum reinforcement learning (CRL) improves the learning speed and stability of an agent by exposing it to a tailored series of tasks throughout learning. Despite empirical successes, an open question in CRL is how to automatically generate a curriculum for a given reinforcement learning (RL) agent, avoiding manual design. In this paper, we propose an answer by interpreting the curriculum generation as an inference problem, where distributions over tasks are progressively learned to approach the target task. This approach leads to an automatic curriculum generation, whose pace is controlled by the agent, with solid theoretical motivation and easily integrated with deep RL algorithms. In the conducted experiments, the curricula generated with the proposed algorithm significantly improve learning performance across several environments and deep RL algorithms, matching or outperforming state-of-the-art existing CRL algorithms.
Block Transformer: Global-to-Local Language Modeling for Fast Inference
We introduce the Block Transformer which adopts hierarchical global-to-local modeling to autoregressive transformers to mitigate the inference bottlenecks associated with self-attention. Self-attention requires the key-value (KV) cache of all previous sequences to be retrieved from memory at every decoding step to retrieve context information, leading to two primary bottlenecks during batch inference. First, there is a significant delay in obtaining the first token, as the information of the entire prompt must first be processed to prefill the KV cache. Second, computation of subsequent tokens is bottlenecked by the high memory I/O demand of fetching the entire KV cache, which grows linearly with sequence length, incurring quadratic memory reads overall. We design the Block Transformer to strategically mitigate these costs, by incorporating coarsity and locality into an integrated global-to-local architecture. At the lower layers, we aggregate tokens into fixed size blocks to apply attention across the entire sequence at coarse-grained detail, to capture the global context while minimizing KV cache overhead. At upper layers, we apply attention within each block to decode individual tokens, to model fine-grained details with a lightweight local KV cache. We pretrain vanilla and Block Transformers from scratch and demonstrate that Block Transformers reach 10-20x inference throughput compared to vanilla transformers with equivalent perplexity and zero-shot task performance.
On the cohesion and separability of average-link for hierarchical agglomerative clustering
Average-link is widely recognized as one of the most popular and effective methods for building hierarchical agglomerative clustering. The available theoretical analyses show that this method has a much better approximation than other popular heuristics, as single-linkage and complete-linkage, regarding variants of Dasgupta's cost function [STOC 2016]. However, these analyses do not separate average-link from a random hierarchy and they are not appealing for metric spaces since every hierarchical clustering has a 1/2 approximation with regard to the variant of Dasgupta's function that is employed for dissimilarity measures [Moseley and Yang 2020]. In this paper, we present a comprehensive study of the performance of average-link in metric spaces, regarding several natural criteria that capture separability and cohesion, and are more interpretable than Dasgupta's cost function and its variants. We also present experimental results with real datasets that, together with our theoretical analyses, suggest that average-link is a better choice than other related methods when both cohesion and separability are important goals.
685bfde03eb646c27ed565881917c71c-AuthorFeedback.pdf
Variance of 1/d is chosen so that the noise is of the same order as size of the domain, i.e., Gaussian distribution with variance 1/d is close to a uniform distribution over the unit ball. This clipping is done for ease of presentation and to ensure that no matter what the original distribution over X was, the Gaussian convolution has most of its density within the ball of radius 2. Qualitatively similar results can be achieved even without this clipping or with clipping to X which would be necessary if we restrict the adversary to only use instances in X.
Nuclear Fusion Diamond Polishing Dataset Sean Hayes
In the Inertial Confinement Fusion (ICF) process, roughly a 2mm spherical shell made of high-density carbon is used as a target for laser beams, which compress and heat it to energy levels needed for high fusion yield in nuclear fusion. These shells are polished meticulously to meet the standards for a fusion shot. However, the polishing of these shells involves multiple stages, with each stage taking several hours. To make sure that the polishing process is advancing in the right direction, we are able to measure the shell surface roughness. This measurement, however, is very labor-intensive, time-consuming, and requires a human operator.
neurips_2022
The checklist follows the references. Please read the checklist guidelines carefully for information on how to answer these questions. You are strongly encouraged to include a justification to your answer, either by referencing the appropriate section of your paper or providing a brief inline description. For example: Did you include the license to the code and datasets? Did you include the license to the code and datasets?
Error Analysis of Spherically Constrained Least Squares Reformulation in Solving the Stackelberg Prediction Game
The Stackelberg prediction game (SPG) is a popular model for characterizing strategic interactions between a learner and an adversarial data provider. Although optimization problems in SPGs are often NP-hard, a notable special case involving the least squares loss (SPG-LS) has gained significant research attention recently [1, 2, 3]. The latest state-of-the-art method for solving the SPG-LS problem is the spherically constrained least squares reformulation (SCLS) method proposed in the work of [3]. However, the paper [3] lacks theoretical analysis on the error of the SCLS method, which limits its large-scale applications. In this paper, we investigate the estimation error between the learner obtained by the SCLS method and the actual learner. Specifically, we reframe the estimation error of the SCLS method as a Primary Optimization (PO) problem and utilize the Convex Gaussian min-max theorem (CGMT) to transform the PO problem into an Auxiliary Optimization (AO) problem. Subsequently, we provide a theoretical error analysis for the SCLS method based on this simplified AO problem. This analysis not only strengthens the theoretical framework of the SCLS method but also confirms the reliability of the learner produced by it. We further conduct experiments to validate our theorems, and the results are in excellent agreement with our theoretical predictions.