Not enough data to create a plot.
Try a different view from the menu above.
Accelerating Sparse Convolution with Column Vector-Wise Sparsity
Weight sparsity is a promising approach to reducing the model size and computation cost of convolutional neural networks (CNNs). Nevertheless, non-zero weights often distribute randomly in sparse CNN models, introducing enormous difficulty in obtaining actual speedup on common hardware (e.g., GPU) over their dense counterparts. Existing acceleration solutions either require hardware modifications for irregular memory access support or rely on a partially structured sparsity pattern. Neither of these methods is capable of achieving fruitful speedup on convolution layers. In this work, we propose an algorithm-software co-designed sparse convolution based on a novel out-vector-wise (OVW) sparse pattern. Building on the insight that vertical vector integrity can preserve continuous memory access in IM2COL, the OVW pattern treats a V 1 vector as unit. To reduce the error caused by sparsity, we propose an equivalent transformation process, i.e., clustering-based channel permutation, to gather similar rows together. Experimental evaluations demonstrate that our method achieves a 1.7 and 3.2 speedup over the SOTA solution and the dense convolution of ResNet50 on NVIDIA V100 at 75% sparsity, respectively, with only negligible accuracy loss. Moreover, compared to the SOTA solution that achieves speedups only on data with 60% sparsity or more, our method begins to obtain speedups on data with only 10% sparsity.
Truth is Universal: Robust Detection of Lies in LLMs Lennart Bรผrger
Large Language Models (LLMs) have revolutionised natural language processing, exhibiting impressive human-like capabilities. In particular, LLMs are capable of "lying", knowingly outputting false statements. Hence, it is of interest and importance to develop methods to detect when LLMs lie. Indeed, several authors trained classifiers to detect LLM lies based on their internal model activations. However, other researchers showed that these classifiers may fail to generalise, for example to negated statements.
Enhancing Diversity in Bayesian Deep Learning via Hyperspherical Energy Minimization of CKA
Particle-based Bayesian deep learning often requires a similarity metric to compare two networks. However, naive similarity metrics lack permutation invariance and are inappropriate for comparing networks. Centered Kernel Alignment (CKA) on feature kernels has been proposed to compare deep networks but has not been used as an optimization objective in Bayesian deep learning. In this paper, we explore the use of CKA in Bayesian deep learning to generate diverse ensembles and hypernetworks that output a network posterior. Noting that CKA projects kernels onto a unit hypersphere and that directly optimizing the CKA objective leads to diminishing gradients when two networks are very similar. We propose adopting the approach of hyperspherical energy (HE) on top of CKA kernels to address this drawback and improve training stability. Additionally, by leveraging CKA-based feature kernels, we derive feature repulsive terms applied to synthetically generated outlier examples. Experiments on both diverse ensembles and hypernetworks show that our approach significantly outperforms baselines in terms of uncertainty quantification in both synthetic and realistic outlier detection tasks.
f9dc462382fef56d58279e75de2438f3-Paper-Conference.pdf
Recent research has shown that Transformers with linear attention are capable of in-context learning (ICL) by implementing a linear estimator through gradient descent steps. However, the existing results on the optimization landscape apply under stylized settings where task and feature vectors are assumed to be IID and the attention weights are fully parameterized. In this work, we develop a stronger characterization of the optimization and generalization landscape of ICL through contributions on architectures, low-rank parameterization, and correlated designs: (1) We study the landscape of 1-layer linear attention and 1-layer H3, a statespace model. Under a suitable correlated design assumption, we prove that both implement 1-step preconditioned gradient descent. We show that thanks to its native convolution filters, H3 also has the advantage of implementing sample weighting and outperforming linear attention in suitable settings.
An Analysis of Elo Rating Systems via Markov Chains
We present a theoretical analysis of the Elo rating system, a popular method for ranking skills of players in an online setting. In particular, we study Elo under the Bradley-Terry-Luce model and, using techniques from Markov chain theory, show that Elo learns the model parameters at a rate competitive with the state of the art. We apply our results to the problem of efficient tournament design and discuss a connection with the fastest-mixing Markov chain problem.
Expectation-Maximization Contrastive Learning for Compact Video-and-Language Representations
Most video-and-language representation learning approaches employ contrastive learning, e.g., CLIP [53], to project the video and text features into a common latent space according to the semantic similarities of text-video pairs. However, such learned shared latent spaces are not often optimal, and the modality gap between visual and textual representation can not be fully eliminated. In this paper, we propose Expectation-Maximization Contrastive Learning (EMCL) to learn compact video-and-language representations. Specifically, we use the Expectation-Maximization algorithm to find a compact set of bases for the latent space, where the features could be concisely represented as the linear combinations of these bases. Such feature decomposition of video-and-language representations reduces the rank of the latent space, resulting in increased representing power for the semantics. Extensive experiments on three benchmark text-video retrieval datasets prove that our EMCL can learn more discriminative video-and-language representations than previous methods, and significantly outperform previous state-of-the-art methods across all metrics.
f9c2ab8d429044e0c35bcece2ff6d123-Paper-Conference.pdf
Deep neural networks (DNNs) exhibit a surprising structure in their final layer known as neural collapse (NC), and a growing body of works has currently investigated the propagation of neural collapse to earlier layers of DNNs - a phenomenon called deep neural collapse (DNC). However, existing theoretical results are restricted to special cases: linear models, only two layers or binary classification. In contrast, we focus on non-linear models of arbitrary depth in multi-class classification and reveal a surprising qualitative shift. As soon as we go beyond two layers or two classes, DNC stops being optimal for the deep unconstrained features model (DUFM) - the standard theoretical framework for the analysis of collapse. The main culprit is a low-rank bias of multi-layer regularization schemes: this bias leads to optimal solutions of even lower rank than the neural collapse. We support our theoretical findings with experiments on both DUFM and real data, which show the emergence of the low-rank structure in the solution found by gradient descent.