Not enough data to create a plot.
Try a different view from the menu above.
Towards General Loop Invariant Generation: A Benchmark of Programs with Memory Manipulation Chang Liu
Program verification is vital for ensuring software reliability, especially in the context of increasingly complex systems. Loop invariants, remaining true before and after each iteration of loops, are crucial for this verification process. Traditional provers and machine learning based methods for generating loop invariants often require expert intervention or extensive labeled data, and typically only handle numerical property verification.
What is Where by Looking: Weakly-Supervised Open-World Phrase-Grounding without Text Inputs
Given an input image, and nothing else, our method returns the bounding boxes of objects in the image and phrases that describe the objects. This is achieved within an open world paradigm, in which the objects in the input image may not have been encountered during the training of the localization mechanism. Moreover, training takes place in a weakly supervised setting, where no bounding boxes are provided. To achieve this, our method combines two pre-trained networks: the CLIP image-to-text matching score and the BLIP image captioning tool. Training takes place on COCO images and their captions and is based on CLIP. Then, during inference, BLIP is used to generate a hypothesis regarding various regions of the current image. Our work generalizes weakly supervised segmentation and phrase grounding and is shown empirically to outperform the state of the art in both domains. It also shows very convincing results in the novel task of weakly-supervised open-world purely visual phrase-grounding presented in our work. For example, on the datasets used for benchmarking phrasegrounding, our method results in a very modest degradation in comparison to methods that employ human captions as an additional input.
No Change, No Gain: Empowering Graph Neural Networks with Expected Model Change Maximization for Active Learning
Graph Neural Networks (GNNs) are crucial for machine learning applications with graph-structured data, but their success depends on sufficient labeled data. We present a novel active learning (AL) method for GNNs, extending the Expected Model Change Maximization (EMCM) principle to improve prediction performance on unlabeled data. By presenting a Bayesian interpretation for the node embeddings generated by GNNs under the semi-supervised setting, we efficiently compute the closed-form EMCM acquisition function as the selection criterion for AL without re-training.
Frustratingly Easy Test-Time Adaptation of Vision-Language Models Matteo Farina 1, Giovanni Iacca 1 Massimiliano Mancini 1
Vision-Language Models seamlessly discriminate among arbitrary semantic categories, yet they still suffer from poor generalization when presented with challenging examples. For this reason, Episodic Test-Time Adaptation (TTA) strategies have recently emerged as powerful techniques to adapt VLMs in the presence of a single unlabeled image. The recent literature on TTA is dominated by the paradigm of prompt tuning by Marginal Entropy Minimization, which, relying on online backpropagation, inevitably slows down inference while increasing memory. In this work, we theoretically investigate the properties of this approach and unveil that a surprisingly strong TTA method lies dormant and hidden within it.
TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series Alexander Nikitin Samuel Kaski Department of Computer Science, Aalto University
Time series data are essential in a wide range of machine learning (ML) applications. However, temporal data are often scarce or highly sensitive, limiting data sharing and the use of data-intensive ML methods. A possible solution to this problem is the generation of synthetic datasets that resemble real data. In this work, we introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling and evaluation of synthetic time series datasets. TSGM includes a broad repertoire of machine learning methods: generative models, probabilistic, simulation-based approaches, and augmentation techniques. The framework enables users to evaluate the quality of the produced data from different angles: similarity, downstream effectiveness, predictive consistency, diversity, fairness, and privacy. TSGM is extensible and user-friendly, which allows researchers to rapidly implement their own methods and compare them in a shareable environment. The framework has been tested on open datasets and in production and proved to be beneficial in both cases.
Almost Minimax Optimal Best Arm Identification in Piecewise Stationary Linear Bandits
We propose a novel piecewise stationary linear bandit (PSLB) model, where the environment randomly samples a context from an unknown probability distribution at each changepoint, and the quality of an arm is measured by its return averaged over all contexts. The contexts and their distribution, as well as the changepoints are unknown to the agent.