Not enough data to create a plot.
Try a different view from the menu above.
PDP: Parameter-free Differentiable Pruning is All You Need
DNN pruning is a popular way to reduce the size of a model, improve the inference latency, and minimize the power consumption on DNN accelerators. However, existing approaches might be too complex, expensive or ineffective to apply to a variety of vision/language tasks, DNN architectures and to honor structured pruning constraints. In this paper, we propose an efficient yet effective train-time pruning scheme, Parameter-free Differentiable Pruning (PDP), which offers stateof-the-art qualities in model size, accuracy, and training cost. PDP uses a dynamic function of weights during training to generate soft pruning masks for the weights in a parameter-free manner for a given pruning target. While differentiable, the simplicity and efficiency of PDP make it universal enough to deliver state-of-the-art random/structured/channel pruning results on various vision and natural language tasks.
Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment
Aligning human preference and value is an important requirement for contemporary foundation models. State-of-the-art techniques such as Reinforcement Learning from Human Feedback (RLHF) often consist of two stages: 1) supervised finetuning (SFT), where the model is fine-tuned by learning from human demonstration data; 2) Preference learning, where preference data is used to learn a reward model, which is in turn used by a reinforcement learning (RL) step to fine-tune the model. Such reward model serves as a proxy to human preference, and it is critical to guide the RL step towards improving the model quality. In this work, we argue that the SFT stage significantly benefits from learning a reward model as well. Instead of using the human demonstration data directly via supervised learning, we propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model. This approach leads to new SFT algorithms that are not only efficient to implement, but are robust to the presence of low-quality supervised learning data.
The Power of Extrapolation in Federated Learning
We propose and study several server-extrapolation strategies for enhancing the theoretical and empirical convergence properties of the popular federated learning optimizer FedProx [Li et al., 2020]. While it has long been known that some form of extrapolation can help in the practice of FL, only a handful of works provide any theoretical guarantees. The phenomenon seems elusive, and our current theoretical understanding remains severely incomplete. In our work, we focus on smooth convex or strongly convex problems in the interpolation regime. In particular, we propose Extrapolated FedProx (FedExProx), and study three extrapolation strategies: a constant strategy (depending on various smoothness parameters and the number of participating devices), and two smoothness-adaptive strategies; one based on the notion of gradient diversity (FedExProx-GraDS), and the other one based on the stochastic Polyak stepsize (FedExProx-StoPS). Our theory is corroborated with carefully constructed numerical experiments.
SimPO: Simple Preference Optimization with a Reference-Free Reward 2 1
Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further improving the algorithm's performance. We compare SimPO to DPO and its recent variants across various state-of-the-art training setups, including both base and instruction-tuned models such as Mistral, Llama 3, and Gemma 2. We evaluate on extensive chat-based evaluation benchmarks, including AlpacaEval 2, MT-Bench, and Arena-Hard. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Gemma-2-9B-it, achieves a 72.4% length-controlled win rate on AlpacaEval 2, a 59.1% win rate on Arena-Hard, and ranks 1st on Chatbot Arena among <10B models with real user votes.
Crafting Interpretable Embeddings for Language Neuroscience by Asking LLMs Questions
Large language models (LLMs) have rapidly improved text embeddings for a growing array of natural-language processing tasks. However, their opaqueness and proliferation into scientific domains such as neuroscience have created a growing need for interpretability. Here, we ask whether we can obtain interpretable embeddings through LLM prompting. We introduce question-answering embeddings (QA-Emb), embeddings where each feature represents an answer to a yes/no question asked to an LLM. Training QA-Emb reduces to selecting a set of underlying questions rather than learning model weights. We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel responses to language stimuli. QA-Emb significantly outperforms an established interpretable baseline, and does so while requiring very few questions. This paves the way towards building flexible feature spaces that can concretize and evaluate our understanding of semantic brain representations. We additionally find that QA-Emb can be effectively approximated with an efficient model, and we explore broader applications in simple NLP tasks.
RobIR: Robust Inverse Rendering for High-Illumination Scenes Ziyi Yang 1 Yanzhen Chen 1 Xinyu Gao 1 Yazhen Yuan 2
Implicit representation has opened up new possibilities for inverse rendering. However, existing implicit neural inverse rendering methods struggle to handle strongly illuminated scenes with significant shadows and slight reflections. The existence of shadows and reflections can lead to an inaccurate understanding of the scene, making precise factorization difficult. To this end, we present RobIR, an implicit inverse rendering approach that uses ACES tone mapping and regularized visibility estimation to reconstruct accurate BRDF of the object. By accurately modeling the indirect radiance field, normal, visibility, and direct light simultaneously, we are able to accurately decouple environment lighting and the object's PBR materials without imposing strict constraints on the scene. Even in high-illumination scenes with shadows and specular reflections, our method can recover high-quality albedo and roughness with no shadow interference. RobIR outperforms existing methods in both quantitative and qualitative evaluations. Code is available at https://github.com/ingra14m/RobIR.
Appendix NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation
For all the experiments in the paper, we used three different random seeds (0, 1, 2) and reported the average errors (and standard deviations). A.1 Baseline details We referred to the official implementations of the baselines. We use the reported best hyperparameters from their paper or code. We further tuned hyperparameters if there exists a hyperparameter selection guideline. Here, we provide additional details of the baseline implementations, including hyperparameters.
NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation
Test-time adaptation (TTA) is an emerging paradigm that addresses distributional shifts between training and testing phases without additional data acquisition or labeling cost; only unlabeled test data streams are used for continual model adaptation. Previous TTA schemes assume that the test samples are independent and identically distributed (i.i.d.), even though they are often temporally correlated (non-i.i.d.) in application scenarios, e.g., autonomous driving. We discover that most existing TTA methods fail dramatically under such scenarios. Motivated by this, we present a new test-time adaptation scheme that is robust against non-i.i.d.
Imbalance Trouble: Revisiting Neural-Collapse Geometry, Ganesh R. Kini
Neural Collapse refers to the remarkable structural properties characterizing the geometry of class embeddings and classifier weights, found by deep nets when trained beyond zero training error. However, this characterization only holds for balanced data. Here we thus ask whether it can be made invariant to class imbalances. Towards this end, we adopt the unconstrained-features model (UFM), a recent theoretical model for studying neural collapse, and introduce Simplex-Encoded-Labels Interpolation (SELI) as an invariant characterization of the neural collapse phenomenon. We prove for the UFM with cross-entropy loss and vanishing regularization that, irrespective of class imbalances, the embeddings and classifiers always interpolate a simplexencoded label matrix and that their individual geometries are determined by the SVD factors of this same label matrix. We then present extensive experiments on synthetic and real datasets that confirm convergence to the SELI geometry. However, we caution that convergence worsens with increasing imbalances. We theoretically support this finding by showing that unlike the balanced case, when minorities are present, ridge-regularization plays a critical role in tweaking the geometry. This defines new questions and motivates further investigations into the impact of class imbalances on the rates at which first-order methods converge to their preferred solutions.