Plotting

LTMD: Learning Improvement of Spiking Neural Networks with Learnable Thresholding Neurons and Moderate Dropout

Neural Information Processing Systems

Spiking Neural Networks (SNNs) have shown substantial promise in processing spatio-temporal data, mimicking biological neuronal mechanisms, and saving computational power. However, most SNNs use fixed model regardless of their locations in the network. This limits SNNs' capability of transmitting precise information in the network, which becomes worse for deeper SNNs. Some researchers try to use specified parametric models in different network layers or regions, but most still use preset or suboptimal parameters. Inspired by the neuroscience observation that different neuronal mechanisms exist in disparate brain regions, we propose a new spiking neuronal mechanism, named learnable thresholding, to address this issue.



Many-shot Jailbreaking

Neural Information Processing Systems

We investigate a family of simple long-context attacks on large language models: prompting with hundreds of demonstrations of undesirable behavior. This attack is newly feasible with the larger context windows recently deployed by language model providers like Google DeepMind, OpenAI and Anthropic. We find that in diverse, realistic circumstances, the effectiveness of this attack follows a power law, up to hundreds of shots. We demonstrate the success of this attack on the most widely used state-of-the-art closed-weight models, and across various tasks. Our results suggest very long contexts present a rich new attack surface for LLMs.



SaulLM-54B & SaulLM-141B: Scaling Up Domain Adaptation for the Legal Domain

Neural Information Processing Systems

In this paper, we introduce SaulLM-54B and SaulLM-141B, two large language models (LLMs) tailored for the legal sector. These models, which feature architectures of 54 billion and 141 billion parameters, respectively, are based on the Mixtral architecture. The development of SaulLM-54B and SaulLM-141B is guided by large-scale domain adaptation, divided into three strategies: (1) the exploitation of continued pretraining involving a base corpus that includes over 540 billion of legal tokens, (2) the implementation of a specialized legal instruction-following protocol, and (3) the alignment of model outputs with human preferences in legal interpretations. The integration of synthetically generated data in the second and third steps enhances the models' capabilities in interpreting and processing legal texts, effectively reaching state-of-the-art performance and outperforming previous open-source models on LegalBench-Instruct. This work explores the trade-offs involved in domain-specific adaptation at this scale, offering insights that may inform future studies on domain adaptation using strong decoder models. Building upon SaulLM-7B, this study refines the approach to produce an LLM better equipped for legal tasks. We are releasing base, instruct, and aligned versions on top of SaulLM-54B and SaulLM-141B under the MIT License to facilitate reuse and collaborative research.


Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization, Dong Wang

Neural Information Processing Systems

Now let us prove InfoNCE is a lower bound to MI and under proper conditions this estimate is tight. Our proof is based on establishing that InfoNCE is a multi-sample extension of the NWJ bound. For completeness, we first repeat the proof for BA and UBA below, and then show UBA leads to NWJ and its multi-sample variant InfoNCE.



Towards Multi-dimensional Explanation Alignment for Medical Classification

Neural Information Processing Systems

The lack of interpretability in the field of medical image analysis has significant ethical and legal implications. Existing interpretable methods in this domain encounter several challenges, including dependency on specific models, difficulties in understanding and visualization, as well as issues related to efficiency. To address these limitations, we propose a novel framework called Med-MICN (Medical Multidimensional Interpretable Concept Network). Med-MICN provides interpretability alignment for various angles, including neural symbolic reasoning, concept semantics, and saliency maps, which are superior to current interpretable methods. Its advantages include high prediction accuracy, interpretability across multiple dimensions, and automation through an end-to-end concept labeling process that reduces the need for extensive human training effort when working with new datasets. To demonstrate the effectiveness and interpretability of Med-MICN, we apply it to four benchmark datasets and compare it with baselines. The results clearly demonstrate the superior performance and interpretability of our Med-MICN.


Bandit-Feedback Online Multiclass Classification: Variants and Tradeoffs

Neural Information Processing Systems

Consider the domain of multiclass classification within the adversarial online setting. What is the price of relying on bandit feedback as opposed to full information? To what extent can an adaptive adversary amplify the loss compared to an oblivious one? To what extent can a randomized learner reduce the loss compared to a deterministic one? We study these questions in the mistake bound model and provide nearly tight answers. We demonstrate that the optimal mistake bound under bandit feedback is at most O(k) times higher than the optimal mistake bound in the full information case, where k represents the number of labels. This bound is tight and provides an answer to an open question previously posed and studied by Daniely and Helbertal ['13] and by Long ['17, '20], who focused on deterministic learners.