Plotting


Synaptic Strength For Convolutional Neural Network

Neural Information Processing Systems

Convolutional Neural Networks(CNNs) are both computation and memory intensive which hindered their deployment in mobile devices. Inspired by the relevant concept in neural science literature, we propose Synaptic Pruning: a data-driven method to prune connections between input and output feature maps with a newly proposed class of parameters called Synaptic Strength. Synaptic Strength is designed to capture the importance of a connection based on the amount of information it transports. Experiment results show the effectiveness of our approach. On CIFAR-10, we prune connections for various CNN models with up to 96%, which results in significant size reduction and computation saving. Further evaluation on ImageNet demonstrates that synaptic pruning is able to discover efficient models which is competitive to state-of-the-art compact CNNs such as MobileNet-V2 and NasNet-Mobile. Our contribution is summarized as following: (1) We introduce Synaptic Strength, a new class of parameters for CNNs to indicate the importance of each connections.



Sparse DNNs with Improved Adversarial Robustness

Neural Information Processing Systems

By converting dense models into sparse ones, pruning appears to be a promising solution to reducing the computation/memory cost. This paper studies classification models, especially DNN-based ones, to demonstrate that there exists intrinsic relationships between their sparsity and adversarial robustness.


Measures of distortion for machine learning

Neural Information Processing Systems

Given data from a general metric space, one of the standard machine learning pipelines is to first embed the data into a Euclidean space and subsequently apply machine learning algorithms to analyze the data. The quality of such an embedding is typically described in terms of a distortion measure. In this paper, we show that many of the existing distortion measures behave in an undesired way, when considered from a machine learning point of view. We investigate desirable properties of distortion measures and formally prove that most of the existing measures fail to satisfy these properties. These theoretical findings are supported by simulations, which for example demonstrate that existing distortion measures are not robust to noise or outliers and cannot serve as good indicators for classification accuracy. As an alternative, we suggest a new measure of distortion, called ฯƒ-distortion. We can show both in theory and in experiments that it satisfies all desirable properties and is a better candidate to evaluate distortion in the context of machine learning.


Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates

Neural Information Processing Systems

We consider the problem of global optimization of an unknown non-convex smooth function with noisy zeroth-order feedback. We propose a local minimax framework to study the fundamental difficulty of optimizing smooth functions with adaptive function evaluations. We show that for functions with fast growth around their global minima, carefully designed optimization algorithms can identify a near global minimizer with many fewer queries than worst-case global minimax theory predicts. For the special case of strongly convex and smooth functions, our implied convergence rates match the ones developed for zeroth-order convex optimization problems.


Temporal Regularization for Markov Decision Process

Neural Information Processing Systems

Several applications of Reinforcement Learning suffer from instability due to high variance. This is especially prevalent in high dimensional domains. Regularization is a commonly used technique in machine learning to reduce variance, at the cost of introducing some bias. Most existing regularization techniques focus on spatial (perceptual) regularization. Yet in reinforcement learning, due to the nature of the Bellman equation, there is an opportunity to also exploit temporal regularization based on smoothness in value estimates over trajectories. This paper explores a class of methods for temporal regularization. We formally characterize the bias induced by this technique using Markov chain concepts. We illustrate the various characteristics of temporal regularization via a sequence of simple discrete and continuous MDPs, and show that the technique provides improvement even in high-dimensional Atari games.