Plotting





Evolutionary Stochastic Gradient Descent for Optimization of Deep Neural Networks

Neural Information Processing Systems

We propose a population-based Evolutionary Stochastic Gradient Descent (ESGD) framework for optimizing deep neural networks. ESGD combines SGD and gradient-free evolutionary algorithms as complementary algorithms in one framework in which the optimization alternates between the SGD step and evolution step to improve the average fitness of the population. With a back-off strategy in the SGD step and an elitist strategy in the evolution step, it guarantees that the best fitness in the population will never degrade. In addition, individuals in the population optimized with various SGD-based optimizers using distinct hyperparameters in the SGD step are considered as competing species in a coevolution setting such that the complementarity of the optimizers is also taken into account. The effectiveness of ESGD is demonstrated across multiple applications including speech recognition, image recognition and language modeling, using networks with a variety of deep architectures.




Neural Proximal Gradient Descent for Compressive Imaging

Neural Information Processing Systems

Recovering high-resolution images from limited sensory data typically leads to a serious ill-posed inverse problem, demanding inversion algorithms that effectively capture the prior information. Learning a good inverse mapping from training data faces severe challenges, including: (i) scarcity of training data; (ii) need for plausible reconstructions that are physically feasible; (iii) need for fast reconstruction, especially in real-time applications. We develop a successful system solving all these challenges, using as basic architecture the recurrent application of proximal gradient algorithm. We learn a proximal map that works well with real images based on residual networks. Contraction of the resulting map is analyzed, and incoherence conditions are investigated that drive the convergence of the iterates. Extensive experiments are carried out under different settings: (a) reconstructing abdominal MRI of pediatric patients from highly undersampled Fourier-space data and (b) superresolving natural face images. Our key findings include: 1. a recurrent ResNet with a single residual block unrolled from an iterative algorithm yields an effective proximal which accurately reveals MR image details. 2. Our architecture significantly outperforms conventional non-recurrent deep ResNets by 2dB SNR; it is also trained much more rapidly.


Learning Hierarchical Semantic Image Manipulation through Structured Representations

Neural Information Processing Systems

Understanding, reasoning, and manipulating semantic concepts of images have been a fundamental research problem for decades. Previous work mainly focused on direct manipulation on natural image manifold through color strokes, keypoints, textures, and holes-to-fill. In this work, we present a novel hierarchical framework for semantic image manipulation. Key to our hierarchical framework is that we employ structured semantic layout as our intermediate representation for manipulation. Initialized with coarse-level bounding boxes, our structure generator first creates pixel-wise semantic layout capturing the object shape, object-object interactions, and object-scene relations. Then our image generator fills in the pixel-level textures guided by the semantic layout. Such framework allows a user to manipulate images at object-level by adding, removing, and moving one bounding box at a time. Experimental evaluations demonstrate the advantages of the hierarchical manipulation framework over existing image generation and context hole-filing models, both qualitatively and quantitatively. Benefits of the hierarchical framework are further demonstrated in applications such as semantic object manipulation, interactive image editing, and data-driven image manipulation.