Plotting


FedGTST: Boosting Global Transferability of Federated Models via Statistics Tuning

Neural Information Processing Systems

The performance of Transfer Learning (TL) significantly depends on effective pretraining, which not only requires extensive amounts of data but also substantial computational resources. As a result, in practice, it is challenging to successfully perform TL at the level of individual model developers.


Gated Inference Network: Inference and Learning State-Space Models

Neural Information Processing Systems

This paper advances temporal reasoning within dynamically changing highdimensional noisy observations, focusing on a latent space that characterizes the nonlinear dynamics of objects in their environment. We introduce the Gated Inference Network (GIN), an efficient approximate Bayesian inference algorithm for state space models (SSMs) with nonlinear state transitions and emissions. GIN disentangles two latent representations: one representing the object derived from a nonlinear mapping model, and another representing the latent state describing its dynamics. This disentanglement enables direct state estimation and missing data imputation as the world evolves. To infer the latent state, we utilize a deep extended Kalman filter (EKF) approach that integrates a novel compact RNN structure to compute both the Kalman Gain (KG) and smoothing gain (SG), completing the data flow. This design results in a computational cost per step that is linearly faster than EKF but introduces issues such as the exploding gradient problem. To mitigate the exploding gradients caused by the compact RNN structure in our model, we propose a specialized learning method that ensures stable training and inference. The model is then trained end-to-end on videos depicting a diverse range of simulated and real-world physical systems, and outperforms its counterparts --RNNs, autoregressive models, and variational approaches-- in state estimation and missing data imputation tasks.


BiDM: Pushing the Limit of Quantization for Diffusion Models

Neural Information Processing Systems

Diffusion models (DMs) have been significantly developed and widely used in various applications due to their excellent generative qualities. However, the expensive computation and massive parameters of DMs hinder their practical use in resource-constrained scenarios. As one of the effective compression approaches, quantization allows DMs to achieve storage saving and inference acceleration by reducing bit-width while maintaining generation performance. However, as the most extreme quantization form, 1-bit binarization causes the generation performance of DMs to face severe degradation or even collapse. This paper proposes a novel method, namely BiDM, for fully binarizing weights and activations of DMs, pushing quantization to the 1-bit limit. From a temporal perspective, we introduce the Timestep-friendly Binary Structure (TBS), which uses learnable activation binarizers and cross-timestep feature connections to address the highly timestep-correlated activation features of DMs. From a spatial perspective, we propose Space Patched Distillation (SPD) to address the difficulty of matching binary features during distillation, focusing on the spatial locality of image generation tasks and noise estimation networks. As the first work to fully binarize DMs, the W1A1 BiDM on the LDM-4 model for LSUN-Bedrooms 256 256 achieves a remarkable FID of 22.74, significantly outperforming the current state-of-the-art general binarization methods with an FID of 59.44 and invalid generative samples, and achieves up to excellent 28.0 storage and 52.7 OPs savings.


Truly Deterministic Policy Optimization, Matthew West

Neural Information Processing Systems

In this paper, we present a policy gradient method that avoids exploratory noise injection and performs policy search over the deterministic landscape, with the goal of improving learning with long horizons and non-local rewards. By avoiding noise injection all sources of estimation variance can be eliminated in systems with deterministic dynamics (up to the initial state distribution). Since deterministic policy regularization is impossible using traditional non-metric measures such as the KL divergence, we derive a Wasserstein-based quadratic model for our purposes. We state conditions on the system model under which it is possible to establish a monotonic policy improvement guarantee, propose a surrogate function for policy gradient estimation, and show that it is possible to compute exact advantage estimates if both the state transition model and the policy are deterministic. Finally, we describe two novel robotic control environments--one with non-local rewards in the frequency domain and the other with a long horizon (8000 timesteps)--for which our policy gradient method (TDPO) significantly outperforms existing methods (PPO, TRPO, DDPG, and TD3).


Leveraging Environment Interaction for Automated PDDL Translation and Planning with Large Language Models

Neural Information Processing Systems

Large Language Models (LLMs) have shown remarkable performance in various natural language tasks, but they often struggle with planning problems that require structured reasoning. To address this limitation, the conversion of planning problems into the Planning Domain Definition Language (PDDL) has been proposed as a potential solution, enabling the use of automated planners. However, generating accurate PDDL files typically demands human inputs or correction, which can be time-consuming and costly. In this paper, we propose a novel approach that leverages LLMs and environment feedback to automatically generate PDDL domain and problem description files without the need for human intervention. Our method introduces an iterative refinement process that generates multiple problem PDDL candidates and progressively refines the domain PDDL based on feedback obtained from interacting with the environment. To guide the refinement process, we develop an Exploration Walk (EW) metric, which provides rich feedback signals for LLMs to update the PDDL file. We evaluate our approach on 10 PDDL environments. We achieve an average task solve rate of 66% compared to a 29% solve rate by GPT-4's intrinsic planning with chain-of-thought prompting. Our work enables the automated modeling of planning environments using LLMs and environment feedback, eliminating the need for human intervention in the PDDL translation process and paving the way for more reliable LLM agents in challenging problems.


Supplementary Materials: Training Stronger Baselines for Learning to Optimize

Neural Information Processing Systems

A1.1 Exploration and Exploitation As shown in Figure A1, The average performance of 20 independent runs with different random seeds are reported, and the error bars are also collected. Each mark on the curves represents the converge optimizee training loss after 10, 000 steps, guided by the corresponding L2O. A1.2 Curriculum Learning L2O-DM-CL donates the enhanced L2O-DM with our proposed curriculum learning technique. All learnable optimizers are trained with 5000 epochs. Results and Analysis The results are presented in figure A2.


Effective Sharpness Aware Minimization Requires Layerwise Perturbation Scaling

Neural Information Processing Systems

Sharpness Aware Minimization (SAM) enhances performance across various neural architectures and datasets. As models are continually scaled up to improve performance, a rigorous understanding of SAM's scaling behaviour is paramount. To this end, we study the infinite-width limit of neural networks trained with SAM, using the Tensor Programs framework. Our findings reveal that the dynamics of standard SAM effectively reduce to applying SAM solely in the last layer in wide neural networks, even with optimal hyperparameters.


Certified Machine Unlearning via Noisy Stochastic Gradient Descent

Neural Information Processing Systems

"The right to be forgotten" ensured by laws for user data privacy becomes increasingly important. Machine unlearning aims to efficiently remove the effect of certain data points on the trained model parameters so that it can be approximately the same as if one retrains the model from scratch. We propose to leverage projected noisy stochastic gradient descent for unlearning and establish its first approximate unlearning guarantee under the convexity assumption. Our approach exhibits several benefits, including provable complexity saving compared to retraining, and supporting sequential and batch unlearning. Both of these benefits are closely related to our new results on the infinite Wasserstein distance tracking of the adjacent (un)learning processes. Extensive experiments show that our approach achieves a similar utility under the same privacy constraint while using 2% and 10% of the gradient computations compared with the state-of-the-art gradient-based approximate unlearning methods for mini-batch and full-batch settings, respectively.


Fair Regression with Wasserstein Barycenters

Neural Information Processing Systems

We study the problem of learning a real-valued function that satisfies the Demographic Parity constraint. It demands the distribution of the predicted output to be independent of the sensitive attribute. We consider the case that the sensitive attribute is available for prediction. We establish a connection between fair regression and optimal transport theory, based on which we derive a close form expression for the optimal fair predictor. Specifically, we show that the distribution of this optimum is the Wasserstein barycenter of the distributions induced by the standard regression function on the sensitive groups. This result offers an intuitive interpretation of the optimal fair prediction and suggests a simple post-processing algorithm to achieve fairness. We establish risk and distribution-free fairness guarantees for this procedure. Numerical experiments indicate that our method is very effective in learning fair models, with a relative increase in error rate that is inferior to the relative gain in fairness.