Plotting

Flexible Models for Microclustering with Application to Entity Resolution

Neural Information Processing Systems

Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman--Yor process mixture models make this assumption, as do all other infinitely exchangeable clustering models. However, for some applications, this assumption is inappropriate. For example, when performing entity resolution, the size of each cluster should be unrelated to the size of the data set, and each cluster should contain a negligible fraction of the total number of data points. These applications require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the microclustering property and introducing a new class of models that can exhibit this property.


Data Programming: Creating Large Training Sets, Quickly

Neural Information Processing Systems

Large labeled training sets are the critical building blocks of supervised learning methods and are key enablers of deep learning techniques. For some applications, creating labeled training sets is the most time-consuming and expensive part of applying machine learning. We therefore propose a paradigm for the programmatic creation of training sets called data programming in which users provide a set of labeling functions, which are programs that heuristically label subsets of the data, but that are noisy and may conflict. By viewing these labeling functions as implicitly describing a generative model for this noise, we show that we can recover the parameters of this model to "denoise" the generated training set, and establish theoretically that we can recover the parameters of these generative models in a handful of settings. We then show how to modify a discriminative loss function to make it noise-aware, and demonstrate our method over a range of discriminative models including logistic regression and LSTMs.


Computing and maximizing influence in linear threshold and triggering models

Neural Information Processing Systems

We establish upper and lower bounds for the influence of a set of nodes in certain types of contagion models. We derive two sets of bounds, the first designed for linear threshold models, and the second more broadly applicable to a general class of triggering models, which subsumes the popular independent cascade models, as well. We quantify the gap between our upper and lower bounds in the case of the linear threshold model and illustrate the gains of our upper bounds for independent cascade models in relation to existing results. Importantly, our lower bounds are monotonic and submodular, implying that a greedy algorithm for influence maximization is guaranteed to produce a maximizer within a (1 - 1/e)-factor of the truth. Although the problem of exact influence computation is NP-hard in general, our bounds may be evaluated efficiently.


CliqueCNN: Deep Unsupervised Exemplar Learning

Neural Information Processing Systems

Exemplar learning is a powerful paradigm for discovering visual similarities in an unsupervised manner. In this context, however, the recent breakthrough in deep learning could not yet unfold its full potential. With only a single positive sample, a great imbalance between one positive and many negatives, and unreliable relationships between most samples, training of convolutional neural networks is impaired. Given weak estimates of local distance we propose a single optimization problem to extract batches of samples with mutually consistent relations. Conflicting relations are distributed over different batches and similar samples are grouped into compact cliques.


Tight Complexity Bounds for Optimizing Composite Objectives

Neural Information Processing Systems

We provide tight upper and lower bounds on the complexity of minimizing the average of m convex functions using gradient and prox oracles of the component functions. We show a significant gap between the complexity of deterministic vs randomized optimization. For smooth functions, we show that accelerated gradient descent (AGD) and an accelerated variant of SVRG are optimal in the deterministic and randomized settings respectively, and that a gradient oracle is sufficient for the optimal rate. For non-smooth functions, having access to prox oracles reduces the complexity and we present optimal methods based on smoothing that improve over methods using just gradient accesses.


Fast learning rates with heavy-tailed losses

Neural Information Processing Systems

We study fast learning rates when the losses are not necessarily bounded and may have a distribution with heavy tails. To enable such analyses, we introduce two new conditions: (i) the envelope function \sup_{f \in \mathcal{F}} \ell \circ f, where \ell is the loss function and \mathcal{F} is the hypothesis class, exists and is L r -integrable, and (ii) \ell satisfies the multi-scale Bernstein's condition on \mathcal{F} . Under these assumptions, we prove that learning rate faster than O(n {-1/2}) can be obtained and, depending on r and the multi-scale Bernstein's powers, can be arbitrarily close to O(n {-1}) . We then verify these assumptions and derive fast learning rates for the problem of vector quantization by k -means clustering with heavy-tailed distributions. The analyses enable us to obtain novel learning rates that extend and complement existing results in the literature from both theoretical and practical viewpoints.


Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations

Neural Information Processing Systems

In many scientific and engineering applications, we are tasked with the optimisation of an expensive to evaluate black box function \func . Traditional methods for this problem assume just the availability of this single function. However, in many cases, cheap approximations to \func may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of \func in a small but promising region and speedily identify the optimum.


Supervised Learning with Tensor Networks

Neural Information Processing Systems

Tensor networks are approximations of high-order tensors which are efficient to work with and have been very successful for physics and mathematics applications. We demonstrate how algorithms for optimizing tensor networks can be adapted to supervised learning tasks by using matrix product states (tensor trains) to parameterize non-linear kernel learning models. For the MNIST data set we obtain less than 1% test set classification error. We discuss an interpretation of the additional structure imparted by the tensor network to the learned model.


Learning values across many orders of magnitude

Neural Information Processing Systems

Most learning algorithms are not invariant to the scale of the signal that is being approximated. We propose to adaptively normalize the targets used in the learning updates. This is important in value-based reinforcement learning, where the magnitude of appropriate value approximations can change over time when we update the policy of behavior. Our main motivation is prior work on learning to play Atari games, where the rewards were clipped to a predetermined range. This clipping facilitates learning across many different games with a single learning algorithm, but a clipped reward function can result in qualitatively different behavior.


Using Social Dynamics to Make Individual Predictions: Variational Inference with a Stochastic Kinetic Model

Neural Information Processing Systems

Social dynamics is concerned primarily with interactions among individuals and the resulting group behaviors, modeling the temporal evolution of social systems via the interactions of individuals within these systems. In particular, the availability of large-scale data from social networks and sensor networks offers an unprecedented opportunity to predict state-changing events at the individual level. Examples of such events include disease transmission, opinion transition in elections, and rumor propagation. Unlike previous research focusing on the collective effects of social systems, this study makes efficient inferences at the individual level. In order to cope with dynamic interactions among a large number of individuals, we introduce the stochastic kinetic model to capture adaptive transition probabilities and propose an efficient variational inference algorithm the complexity of which grows linearly -- rather than exponentially-- with the number of individuals.