Plotting

CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training

Neural Information Processing Systems

Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks.


Diffusion-based Curriculum Reinforcement Learning

Neural Information Processing Systems

Curriculum Reinforcement Learning (CRL) is an approach to facilitate the learning process of agents by structuring tasks in a sequence of increasing complexity. Despite its potential, many existing CRL methods struggle to efficiently guide agents toward desired outcomes, particularly in the absence of domain knowledge. This paper introduces DiCuRL (Diffusion Curriculum Reinforcement Learning), a novel method that leverages conditional diffusion models to generate curriculum goals. To estimate how close an agent is to achieving its goal, our method uniquely incorporates a Q-function and a trainable reward function based on Adversarial Intrinsic Motivation within the diffusion model. Furthermore, it promotes exploration through the inherent noising and denoising mechanism present in the diffusion models and is environment-agnostic. This combination allows for the generation of challenging yet achievable goals, enabling agents to learn effectively without relying on domain knowledge. We demonstrate the effectiveness of DiCuRL in three different maze environments and two robotic manipulation tasks simulated in MuJoCo, where it outperforms or matches nine state-of-the-art CRL algorithms from the literature.


MetaInit: Initializing learning by learning to initialize

Neural Information Processing Systems

Deep learning models frequently trade handcrafted features for deep features learned with much less human intervention using gradient descent. While this paradigm has been enormously successful, deep networks are often difficult to train and performance can depend crucially on the initial choice of parameters. In this work, we introduce an algorithm called MetaInit as a step towards automating the search for good initializations using meta-learning. Our approach is based on a hypothesis that good initializations make gradient descent easier by starting in regions that look locally linear with minimal second order effects. We formalize this notion via a quantity that we call the gradient quotient, which can be computed with any architecture or dataset. MetaInit minimizes this quantity efficiently by using gradient descent to tune the norms of the initial weight matrices. We conduct experiments on plain and residual networks and show that the algorithm can automatically recover from a class of bad initializations. MetaInit allows us to train networks and achieve performance competitive with the state-of-the-art without batch normalization or residual connections. In particular, we find that this approach outperforms normalization for networks without skip connections on CIFAR-10 and can scale to Resnet-50 models on Imagenet.



Reinforcement Learning with Convex Constraints

Neural Information Processing Systems

In standard reinforcement learning (RL), a learning agent seeks to optimize the overall reward. However, many key aspects of a desired behavior are more naturally expressed as constraints. For instance, the designer may want to limit the use of unsafe actions, increase the diversity of trajectories to enable exploration, or approximate expert trajectories when rewards are sparse. In this paper, we propose an algorithmic scheme that can handle a wide class of constraints in RL tasks, specifically, any constraints that require expected values of some vector measurements (such as the use of an action) to lie in a convex set. This captures previously studied constraints (such as safety and proximity to an expert), but also enables new classes of constraints (such as diversity). Our approach comes with rigorous theoretical guarantees and only relies on the ability to approximately solve standard RL tasks. As a result, it can be easily adapted to work with any model-free or model-based RL algorithm. In our experiments, we show that it matches previous algorithms that enforce safety via constraints, but can also enforce new properties that these algorithms cannot incorporate, such as diversity.


873be0705c80679f2c71fbf4d872df59-AuthorFeedback.pdf

Neural Information Processing Systems

We thank the reviewers for their constructive comments. We address the main concerns below. In our implementation, it was crucial to use the improvements from Sec. 3.4. We ran the "positive response" version of ApproPO (Algorithm 5) for 2000 outer-loop iterations (i.e., 2000 updates of ฮป), but needed to make at most 61 RL Note that the policy mixture returned by ApproPO is just a weighted combination of the policies from cache. We will add this discussion to the paper and also update plots, so they are in terms of transitions rather than trajectories.


Harmonizing Visual Text Comprehension and Generation

Neural Information Processing Systems

Simultaneously generating images and texts typically results in performance degradation due to the inherent inconsistency between vision and language modalities. To overcome this challenge, existing approaches resort to modality-specific data for supervised fine-tuning, necessitating distinct model instances. We propose Slide-LoRA, which dynamically aggregates modality-specific and modality-agnostic LoRA experts, partially decoupling the multimodal generation space.


Learn more, but bother less: parameterefficient continual learning

Neural Information Processing Systems

Large Language Models (LLMs) have demonstrated profound capabilities due to their extensive pre-training on diverse corpora. However, LLMs often struggle with catastrophic forgetting when engaged in sequential task learning. In this paper, we propose a novel parameter-efficient approach for continual learning in LLMs, which empirically investigates knowledge transfer from previously learned tasks to new tasks through low-rank matrix parameters, enhancing the learning of new tasks without significant interference. Our method employs sensitivity-based analysis of low-rank matrix parameters to identify knowledge-specific parameters between sequential tasks, which are used to initialize the low-rank matrix parameters in new tasks. To maintain orthogonality and minimize forgetting, we further involve the gradient projection technique that keeps the low-rank subspaces of each new task orthogonal to those of previous tasks. Our experimental results on continual learning benchmarks validate the efficacy of our proposed method, which outperforms existing state-of-the-art methods in reducing forgetting, enhancing task performance, and preserving the model's ability to generalize to unseen tasks.


Multiview Aggregation for Learning Category-Specific Shape Reconstruction

Neural Information Processing Systems

We investigate the problem of learning category-specific 3D shape reconstruction from a variable number of RGB views of previously unobserved object instances. Most approaches for multiview shape reconstruction operate on sparse shape representations, or assume a fixed number of views. We present a method that can estimate dense 3D shape, and aggregate shape across multiple and varying number of input views. Given a single input view of an object instance, we propose a representation that encodes the dense shape of the visible object surface as well as the surface behind line of sight occluded by the visible surface. When multiple input views are available, the shape representation is designed to be aggregated into a single 3D shape using an inexpensive union operation. We train a 2D CNN to learn to predict this representation from a variable number of views (1 or more). We further aggregate multiview information by using permutation equivariant layers that promote order-agnostic view information exchange at the feature level. Experiments show that our approach is able to produce dense 3D reconstructions of objects that improve in quality as more views are added.


here we compare MFP directly to PRECOG[A] on their released CARLA data in Tab. 1. MFP significantly outperforms previous SOTA in [A]

Neural Information Processing Systems

We thank the reviewers for valuable feedback and will make the suggested changes. We've included additional experiments to address the C provides additional results on non-vehicle classes (i.e. We also quantitatively evaluated hypothetical inference in Tab. 2. We report new results using the minMSD B, we created a CARLA-based RL env. We compared it with several SOTA model-free methods, demonstrating faster training and leading to a safer or more robust policy. Reviewer 6: We will release code in the near future and make the suggested clarifications.