Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Second Order Properties of Error Surfaces: Learning Time and Generalization
LeCun, Yann, Kanter, Ido, Solla, Sara A.
The learning time of a simple neural network model is obtained through an analytic computation of the eigenvalue spectrum for the Hessian matrix, which describes the second order properties of the cost function in the space of coupling coefficients. The form of the eigenvalue distribution suggests new techniques for accelerating the learning process, and provides a theoretical justification for the choice of centered versus biased state variables.
Neural Dynamics of Motion Segmentation and Grouping
A neural network model of motion segmentation by visual cortex is described. The model clarifies how preprocessing of motion signals by a Motion Oriented Contrast Filter (MOC Filter) is joined to long-range cooperative motion mechanisms in a motion Cooperative Competitive Loop (CC Loop) to control phenomena such as as induced motion, motion capture, and motion aftereffects. The total model system is a motion Boundary Contour System (BCS) that is computed in parallel with a static BCS before both systems cooperate to generate a boundary representation for three dimensional visual form perception. The present investigations clarify how the static BCS can be modified for use in motion segmentation problems, notably for analyzing how ambiguous local movements (the aperture problem) on a complex moving shape are suppressed and actively reorganized into a coherent global motion signal. 1 INTRODUCTION: WHY ARE STATIC AND MOTION BOUNDARY CONTOUR SYSTEMS NEEDED? Some regions, notably MT, of visual cortex are specialized for motion processing. However, even the earliest stages of visual cortex processing, such as simple cells in VI, require stimuli that change through time for their maximal activation and are direction-sensitive. Why has evolution generated regions such as MT, when even VI is change-sensitive and direction-sensitive? What computational properties are achieved by MT that are not already available in VI?
The Devil and the Network: What Sparsity Implies to Robustness and Memory
Biswas, Sanjay, Venkatesh, Santosh S.
Robustness is a commonly bruited property of neural networks; in particular, a folk theorem in neural computation asserts that neural networks-in contexts with large interconnectivity-continue to function efficiently, albeit with some degradation, in the presence of component damage or loss. A second folk theorem in such contexts asserts that dense interconnectivity between neural elements is a sine qua non for the efficient usage of resources. These premises are formally examined in this communication in a setting that invokes the notion of the "devil"
A Model of Distributed Sensorimotor Control in the Cockroach Escape Turn
Beer, R.D., Kacmarcik, G. J., Ritzmann, R.E., Chiel, H.J.
In response to a puff of wind, the American cockroach turns away and runs. The circuit underlying the initial turn of this escape response consists of three populations of individually identifiable nerve cells and appears to employ distributed representations in its operation. We have reconstructed several neuronal and behavioral properties of this system using simplified neural network models and the backpropagation learning algorithm constrained by known structural characteristics of the circuitry. In order to test and refine the model, we have also compared the model's responses to various lesions with the insect's responses to similar lesions.
VLSI Implementation of TInMANN
Melton, Matt, Phan, Tan, Reeves, Doug, Bout, Dave Van den
A massively parallel, all-digital, stochastic architecture - TlnMAN N - is described which performs competitive and Kohonen types of learning. A VLSI design is shown for a TlnMANN neuron which fits within a small, inexpensive MOSIS TinyChip frame, yet which can be used to build larger networks of several hundred neurons. The neuron operates at a speed of 15 MHz which allows the network to process 290,000 training examples per second. Use of level sensitive scan logic provides the chip with 100% fault coverage, permitting very reliable neural systems to be built.
Speech Recognition Using Demi-Syllable Neural Prediction Model
Iso, Ken-ichi, Watanabe, Takao
The Neural Prediction Model is the speech recognition model based on pattern prediction by multilayer perceptrons. Its effectiveness was confirmed by the speaker-independent digit recognition experiments. This paper presents an improvement in the model and its application to large vocabulary speech recognition, based on subword units. The improvement involves an introduction of "backward prediction," which further improves the prediction accuracy of the original model with only "forward prediction". In application of the model to speaker-dependent large vocabulary speech recognition, the demi-syllable unit is used as a subword recognition unit.
A four neuron circuit accounts for change sensitive inhibition in salamander retina
Teeters, Jeffrey L., Eeckman, Frank H., Werblin, Frank S.
In salamander retina, the response of On-Off ganglion cells to a central flash is reduced by movement in the receptive field surround. Through computer simulation of a 2-D model which takes into account their anatomical and physiological properties, we show that interactions between four neuron types (two bipolar and two amacrine) may be responsible for the generation and lateral conductance of this change sensitive inhibition. The model shows that the four neuron circuit can account for previously observed movement sensitive reductions in ganglion cell sensitivity and allows visualization and prediction of the spatiotemporal pattern of activity in change sensitive retinal cells.
Design and Implementation of a High Speed CMAC Neural Network Using Programmable CMOS Logic Cell Arrays
III, W. Thomas Miller, Box, Brian A., Whitney, Erich C., Glynn, James M.
A high speed implementation of the CMAC neural network was designed using dedicated CMOS logic. This technology was then used to implement two general purpose CMAC associative memory boards for the VME bus. Each board implements up to 8 independent CMAC networks with a total of one million adjustable weights. Each CMAC network can be configured to have from 1 to 512 integer inputs and from 1 to 8 integer outputs. Response times for typical CMAC networks are well below 1 millisecond, making the networks sufficiently fast for most robot control problems, and many pattern recognition and signal processing problems.