Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Applied AI News
MT Telecom, a Dutch telecommunications utility, has installed expert BNR Europe (Harlow, England), the instrument aboard the satellite. Pending system-based help desk systems to R&D subsidiary of telecommunications NASA approval, EUVE will be the centralize its 23 networked local data equipment supplier Northern first orbiting astrophysics mission to Telecom, is using virtual reality technology replace humans with AI technology. This installation proved to be a critical planning. The VR system allows Re:Member Data Services (Memphis, factor in helping the company BNR's engineers to visualize complex Tenn.), a data processor for obtain the IS0 9000 Total Quality installations and how they will work, credit union software services, has System Standard certification, a greatly saving time and effort compared automated all company service and requirement for those organizations to the traditional CAD system. Continental Bank (Chicago, Ill.) has expert system tracks all requests developed a client/server-based intelligent called in by users, and all requests Lockheed Missiles ST Space (Palo application to improve the can be accessed by anyone at the Alto, Calif.) has developed ASAP quality of its customer service.
An Introduction to Least Commitment Planning
Recent developments have clarified the process of generating partially ordered, partially specified sequences of actions whose execution will achieve an agent's goal. This article summarizes a progression of least commitment planners, starting with one that handles the simple STRIPS representation and ending with UCPOP, a planner that manages actions with disjunctive precondition, conditional effects, and universal quantification over dynamic universes. Along the way, I explain how Chapman's formulation of the modal truth criterion is misleading and why his NP-completeness result for reasoning about plans with conditional effects does not apply to UCPOP.
Wrap-Up: a Trainable Discourse Module for Information Extraction
The vast amounts of on-line text now available have ledto renewed interest in information extraction (IE) systems thatanalyze unrestricted text, producing a structured representation ofselected information from the text. This paper presents a novel approachthat uses machine learning to acquire knowledge for some of the higher level IE processing. Wrap-Up is a trainable IE discourse component that makes intersentential inferences and identifies logicalrelations among information extracted from the text. Previous corpus-based approaches were limited to lower level processing such as part-of-speech tagging, lexical disambiguation, and dictionary construction. Wrap-Up is fully trainable, and not onlyautomatically decides what classifiers are needed, but even derives the featureset for each classifier automatically. Performance equals that of a partially trainable discourse module requiring manual customization for each domain.
Operations for Learning with Graphical Models
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Well-known examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, andthe manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximizationalgorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feed-forward networks, and learning Gaussian and discrete Bayesian networks from data. The paper concludes by sketching some implications for data analysis and summarizing how some popular algorithms fall within the framework presented. The main original contributions here are the decompositiontechniques and the demonstration that graphical models provide a framework for understanding and developing complex learning algorithms.
Total-Order and Partial-Order Planning: A Comparative Analysis
Minton, S., Bresina, J., Drummond, M.
For many years, the intuitions underlying partial-order planning were largely taken for granted. Only in the past few years has there been renewed interest in the fundamental principles underlying this paradigm. In this paper, we present a rigorous comparative analysis of partial-order and total-order planning by focusing on two specific planners that can be directly compared. We show that there are some subtle assumptions that underly the wide-spread intuitions regarding the supposed efficiency of partial-order planning. For instance, the superiority ofpartial-order planning can depend critically upon the search strategy and the structure of the search space. Understanding the underlying assumptions is crucial for constructing efficient planners.
A Report to ARPA on Twenty-First Century Intelligent Systems
Grosz, Barbara, Davis, Randall
This report stems from an April 1994 meeting, organized by AAAI at the suggestion of Steve Cross and Gio Wiederhold.1 The purpose of the meeting was to assist ARPA in defining an agenda for foundational AI research. Prior to the meeting, the fellows and officers of AAAI, as well as the report committee members, were asked to recommend areas in which major research thrusts could yield significant scientific gain -- with high potential impact on DOD applications -- over the next ten years. At the meeting, these suggestions and their relevance to current national needs and challenges in computing were discussed and debated. An initial draft of this report was circulated to the fellows and officers.
Frontiers in Run-Time Prediction for the Production-System Paradigm
Efficient indexing schemes have influenced the acceptance of production systems in the industrial world. However, in embedded-control systems, production systems have not been applied intensively because of their nondeterministic run-time behavior. Thus, nonpredictability of response times is a major obstacle to the widespread use of expert systems in the real-time domain. The RETE and TREAT algorithms and their offspring play a major role in the implementation of efficient pattern-matching systems.