Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
GTM: A Principled Alternative to the Self-Organizing Map
Bishop, Christopher M., Svensén, Markus, Williams, Christopher K. I.
The Self-Organizing Map (SOM) algorithm has been extensively studied and has been applied with considerable success to a wide variety of problems. However, the algorithm is derived from heuristic ideas and this leads to a number of significant limitations. In this paper, we consider the problem of modelling the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. We introduce a novel form of latent variable model, which we call the GTM algorithm (for Generative Topographic Mapping), which allows general nonlinear transformations from latent space to data space, and which is trained using the EM (expectation-maximization) algorithm. Our approach overcomes the limitations of the SOM, while introducing no significant disadvantages. We demonstrate the performance of the GTM algorithm on simulated data from flow diagnostics for a multiphase oil pipeline.
A Constructive RBF Network for Writer Adaptation
This paper discusses a fairly general adaptation algorithm which augments a standard neural network to increase its recognition accuracy for a specific user. The basis for the algorithm is that the output of a neural network is characteristic of the input, even when the output is incorrect. We exploit this characteristic output by using an Output Adaptation Module (OAM) which maps this output into the correct user-dependent confidence vector. The OAM is a simplified Resource Allocating Network which constructs radial basis functions online. We applied the OAM to construct a writer-adaptive character recognition system for online handprinted characters.
Multidimensional Triangulation and Interpolation for Reinforcement Learning
Department of Computer Science, Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, PA 15213 Abstract Dynamic Programming, Q-Iearning and other discrete Markov Decision Process solvers can be -applied to continuous d-dimensional state-spaces by quantizing the state space into an array of boxes. This is often problematic above two dimensions: a coarse quantization can lead to poor policies, and fine quantization is too expensive. Possible solutions are variable-resolution discretization, or function approximation by neural nets. A third option, which has been little studied in the reinforcement learning literature, is interpolation on a coarse grid. In this paper we study interpolation techniques that can result in vast improvements in the online behavior of the resulting control systems: multilinear interpolation, and an interpolation algorithm based on an interesting regular triangulation of d-dimensional space.
MIMIC: Finding Optima by Estimating Probability Densities
Bonet, Jeremy S. De, Jr., Charles Lee Isbell, Viola, Paul A.
In many optimization problems, the structure of solutions reflects complex relationships between the different input parameters. For example, experience may tell us that certain parameters are closely related and should not be explored independently. Similarly, experience may establish that a subset of parameters must take on particular values. Any search of the cost landscape should take advantage of these relationships. We present MIMIC, a framework in which we analyze the global structure of the optimization landscape. A novel and efficient algorithm for the estimation of this structure is derived. We use knowledge of this structure to guide a randomized search through the solution space and, in turn, to refine our estimate ofthe structure.
Consistent Classification, Firm and Soft
A classifier is called consistent with respect to a given set of classlabeled points if it correctly classifies the set. We consider classifiers defined by unions of local separators and propose algorithms for consistent classifier reduction. The expected complexities of the proposed algorithms are derived along with the expected classifier sizes. In particular, the proposed approach yields a consistent reduction of the nearest neighbor classifier, which performs "firm" classification, assigning each new object to a class, regardless of the data structure. The proposed reduction method suggests a notion of "soft" classification, allowing for indecision with respect to objects which are insufficiently or ambiguously supported by the data. The performances of the proposed classifiers in predicting stock behavior are compared to that achieved by the nearest neighbor method.
Learning Decision Theoretic Utilities through Reinforcement Learning
Stensmo, Magnus, Sejnowski, Terrence J.
Probability models can be used to predict outcomes and compensate for missing data, but even a perfect model cannot be used to make decisions unless the utility of the outcomes, or preferences between them, are also provided. This arises in many real-world problems, such as medical diagnosis, where the cost of the test as well as the expected improvement in the outcome must be considered. Relatively little work has been done on learning the utilities of outcomes for optimal decision making. In this paper, we show how temporal-difference reinforcement learning (TO(A» can be used to determine decision theoretic utilities within the context of a mixture model and apply this new approach to a problem in medical diagnosis. TO(A) learning of utilities reduces the number of tests that have to be done to achieve the same level of performance compared with the probability model alone, which results in significant cost savings and increased efficiency.
Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches
This paper shows how the prices of option contracts traded in financial markets can be tracked sequentially by means of the Extended Kalman Filter algorithm. I consider call and put option pairs with identical strike price and time of maturity as a two output nonlinear system. The Black-Scholes approach popular in Finance literature and the Radial Basis Functions neural network are used in modelling the nonlinear system generating these observations. I show how both these systems may be identified recursively using the EKF algorithm. I present results of simulations on some FTSE 100 Index options data and discuss the implications of viewing the pricing problem in this sequential manner. 1 INTRODUCTION Data from the financial markets has recently been of much interest to the neural computing community. The complexity of the underlying macroeconomic system and how traders react to the flow of information leads to highly nonlinear relationships between observations.
Spatial Decorrelation in Orientation Tuned Cortical Cells
Dimitrov, Alexander, Cowan, Jack D.
In this paper we propose a model for the lateral connectivity of orientation-selective cells in the visual cortex based on informationtheoretic considerations. We study the properties of the input signal to the visual cortex and find new statistical structures which have not been processed in the retino-geniculate pathway. Applying the idea that the system optimizes the representation of incoming signals, we derive the lateral connectivity that will achieve this for a set of local orientation-selective patches, as well as the complete spatial structure of a layer of such patches. We compare the results with various physiological measurements.
Noisy Spiking Neurons with Temporal Coding have more Computational Power than Sigmoidal Neurons
Furthermore it is shown that networks of noisy spiking neurons with temporal coding have a strictly larger computational power than sigmoidal neural nets with the same number of units. 1 Introduction and Definitions We consider a formal model SNN for a §piking neuron network that is basically a reformulation of the spike response model (and of the leaky integrate and fire model) without using 6-functions (see [Maass, 1996a] or [Maass, 1996b] for further backgrou nd).
Neural Network Models of Chemotaxis in the Nematode Caenorhabditis Elegans
Ferrée, Thomas C., Marcotte, Ben A., Lockery, Shawn R.
We train recurrent networks to control chemotaxis in a computer model of the nematode C. elegans. The model presented is based closely on the body mechanics, behavioral analyses, neuroanatomy and neurophysiology of C. elegans, each imposing constraints relevant for information processing. Simulated worms moving autonomously in simulated chemical environments display a variety of chemotaxis strategies similar to those of biological worms. 1 INTRODUCTION The nematode C. elegans provides a unique opportunity to study the neuronal basis of neural computation in an animal capable of complex goal-oriented behaviors. The adult hermaphrodite is only 1 mm long, and has exactly 302 neurons and 95 muscle cells. The morphology of every cell and the location of most electrical and chemical synapses are known precisely (White et al., 1986), making C. elegans especially attractive for study.