Well File:

Statistical Mechanics of Learning in a Large Committee Machine

Neural Information Processing Systems

We use statistical mechanics to study generalization in large committee machines. For an architecture with nonoverlapping receptive fields a replica calculation yields the generalization error in the limit of a large number of hidden units.


A Boundary Hunting Radial Basis Function Classifier which Allocates Centers Constructively

Neural Information Processing Systems

A new boundary hunting radial basis function (BH-RBF) classifier which allocates RBF centers constructively near class boundaries is described. This classifier creates complex decision boundaries only in regions where confusions occur and corresponding RBF outputs are similar. A predicted square error measure is used to determine how many centers to add and to determine when to stop adding centers. Two experiments are presented which demonstrate the advantages of the BH RBF classifier. One uses artificial data with two classes and two input features where each class contains four clusters but only one cluster is near a decision region boundary.


Attractor Neural Networks with Local Inhibition: from Statistical Physics to a Digitial Programmable Integrated Circuit

Neural Information Processing Systems

Networks with local inhibition are shown to have enhanced computational performance with respect to the classical Hopfield-like networks. In particular the critical capacity of the network is increased as well as its capability to store correlated patterns. Chaotic dynamic behaviour (exponentially long transients) of the devices indicates the overloading of the associative memory. An implementation based on a programmable logic device is here presented. A 16 neurons circuit is implemented whit a XILINK 4020 device.


Modeling Consistency in a Speaker Independent Continuous Speech Recognition System

Neural Information Processing Systems

We would like to incorporate speaker-dependent consistencies, such as gender, in an otherwise speaker-independent speech recognition system. In this paper we discuss a Gender Dependent Neural Network (GDNN) which can be tuned for each gender, while sharing most of the speaker independent parameters. We use a classification network to help generate gender-dependent phonetic probabilities for a statistical (HMM) recognition system. The gender classification net predicts the gender with high accuracy, 98.3% on a Resource Management test set. However, the integration of the GDNN into our hybrid HMM-neural network recognizer provided an improvement in the recognition score that is not statistically significant on a Resource Management test set.


Information, Prediction, and Query by Committee

Neural Information Processing Systems

We analyze the "query by committee" algorithm, a method for filtering informative queries from a random stream of inputs. We show that if the two-member committee algorithm achieves information gain with positive lower bound, then the prediction error decreases exponentially with the number of queries. We show that, in particular, this exponential decrease holds for query learning of thresholded smooth functions.


Weight Space Probability Densities in Stochastic Learning: I. Dynamics and Equilibria

Neural Information Processing Systems

The ensemble dynamics of stochastic learning algorithms can be studied using theoretical techniques from statistical physics. We develop the equations of motion for the weight space probability densities for stochastic learning algorithms. We discuss equilibria in the diffusion approximation and provide expressions for special cases of the LMS algorithm. The equilibrium densities are not in general thermal (Gibbs) distributions in the objective function being minimized, but rather depend upon an effective potential that includes diffusion effects. Finally we present an exact analytical expression for the time evolution of the density for a learning algorithm with weight updates proportional to the sign of the gradient.



An Analog VLSI Chip for Radial Basis Functions

Neural Information Processing Systems

We have designed, fabricated, and tested an analog VLSI chip which computes radial basis functions in parallel. We have developed asynapse circuit that approximates a quadratic function. We aggregate these circuits to form radial basis functions. These radial basis functions are then averaged together using a follower aggregator. 1 INTRODUCTION Radial basis functions (RBFs) are a mel hod for approximating a function from scattered training points [Powell, H)87]. RBFs have been used to solve recognition and prediction problems with a fair amonnt of success [Lee, 1991] [Moody, 1989] [Platt, 1991]. The first layer of an RBF network computes t.he distance of the input to the network to a set of stored memories. Each basis function is a nonlinear function of a corresponding distance. Tht basis functions are then added together with second-layer weights to produce the output of the network.



Using Aperiodic Reinforcement for Directed Self-Organization During Development

Neural Information Processing Systems

We present a local learning rule in which Hebbian learning is conditional on an incorrect prediction of a reinforcement signal. We propose a biological interpretation of such a framework and display its utility through examples in which the reinforcement signal is cast as the delivery of a neuromodulator to its target. Three exam pIes are presented which illustrate how this framework can be applied to the development of the oculomotor system. 1 INTRODUCTION Activity-dependent accounts of the self-organization of the vertebrate brain have relied ubiquitously on correlational (mainly Hebbian) rules to drive synaptic learning. Inthe brain, a major problem for any such unsupervised rule is that many different kinds of correlations exist at approximately the same time scales and each is effectively noise to the next. For example, relationships within and between the retinae among variables such as color, motion, and topography may mask one another and disrupt their appropriate segregation at the level of the thalamus or cortex.