Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with GFlowNets
One of the grand challenges of cell biology is inferring the gene regulatory network (GRN) which describes interactions between genes and their products that control gene expression and cellular function. We can treat this as a causal discovery problem but with two non-standard challenges: (1) regulatory networks are inherently cyclic so we should not model a GRN as a directed acyclic graph (DAG), and (2) observations have significant measurement noise so for typical sample sizes, there will always be a large equivalence class of graphs that are likely given the data, and we want methods that capture this uncertainty. Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over directed acyclic graphs, but not both. In this paper we leverage the fact that it is possible to estimate the velocity'' of the expression of a gene with RNA velocity techniques to develop an approach that addresses both challenges. Because we have access to velocity information, we can treat the Bayesian structure learning problem as a problem of sparse identification of a dynamical system, capturing cyclic feedback loops through time.
Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability
Recent research has observed that in machine learning optimization, gradient descent (GD) often operates at the edge of stability (EoS) [Cohen et al., 2021], where the stepsizes are set to be large, resulting in non-monotonic losses induced by the GD iterates. This paper studies the convergence and implicit bias of constant-stepsize GD for logistic regression on linearly separable data in the EoS regime. Despite the presence of local oscillations, we prove that the logistic loss can be minimized by GD with any constant stepsize over a long time scale. Furthermore, we prove that with any constant stepsize, the GD iterates tend to infinity when projected to a max-margin direction (the hard-margin SVM direction) and converge to a fixed vector that minimizes a strongly convex potential when projected to the orthogonal complement of the max-margin direction. In contrast, we also show that in the EoS regime, GD iterates may diverge catastrophically under the exponential loss, highlighting the superiority of the logistic loss.
Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective
We present a new dataset condensation framework termed Squeeze, Recover and Relabel (SRe 2 L) that decouples the bilevel optimization of model and synthetic data during training, to handle varying scales of datasets, model architectures and image resolutions for efficient dataset condensation. The proposed method demonstrates flexibility across diverse dataset scales and exhibits multiple advantages in terms of arbitrary resolutions of synthesized images, low training cost and memory consumption with high-resolution synthesis, and the ability to scale up to arbitrary evaluation network architectures. Extensive experiments are conducted on Tiny-ImageNet and full ImageNet-1K datasets. Under 50 IPC, our approach achieves the highest 42.5\% and 60.8\% validation accuracy on Tiny-ImageNet and ImageNet-1K, outperforming all previous state-of-the-art methods by margins of 14.5\% and 32.9\%, respectively. Our code and condensed datasets of 50, 200 IPC with 4K recovery budget are available at https://github.com/VILA-Lab/SRe2L.
StyleGAN knows Normal, Depth, Albedo, and More
Intrinsic images, in the original sense, are image-like maps of scene properties like depth, normal, albedo, or shading. This paper demonstrates that StyleGAN can easily be induced to produce intrinsic images. The StyleGAN we used was pretrained by others, so this property is not some accident of our training regime. We show that there are image transformations StyleGAN will {\em not} produce in this fashion, so StyleGAN is not a generic image regression engine. It is conceptually exciting that an image generator should know'' and represent intrinsic images.
Training Chain-of-Thought via Latent-Variable Inference
Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a "chain-of-thought" (CoT) prompt. One can also improve LLMs' performance on a specific task by supervised fine-tuning, i.e., by using gradient ascent on some tunable parameters to maximize the average log-likelihood of correct answers from a labeled training set. Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers; these rationales are expensive to produce by hand. Instead, we propose a fine-tuning strategy that tries to maximize the \emph{marginal} log-likelihood of generating a correct answer using CoT prompting, approximately averaging over all possible rationales. The core challenge is sampling from the posterior over rationales conditioned on the correct answer; we address it using a simple Markov-chain Monte Carlo (MCMC) expectation-maximization (EM) algorithm inspired by the self-taught reasoner (STaR), memoized wake-sleep, Markovian score climbing, and persistent contrastive divergence.
Responsible AI (RAI) Games and Ensembles
Several recent works have studied the societal effects of AI; these include issues such as fairness, robustness, and safety. In many of these objectives, a learner seeks to minimize its worst-case loss over a set of predefined distributions (known as uncertainty sets), with usual examples being perturbed versions of the empirical distribution. In other words, the aforementioned problems can be written as min-max problems over these uncertainty sets. In this work, we provide a general framework for studying these problems, which we refer to as Responsible AI (RAI) games. We provide two classes of algorithms for solving these games: (a) game-play based algorithms, and (b) greedy stagewise estimation algorithms.
A Unifying Perspective on Multi-Calibration: Game Dynamics for Multi-Objective Learning
We provide a unifying framework for the design and analysis of multi-calibrated predictors. By placing the multi-calibration problem in the general setting of multi-objective learning---where learning guarantees must hold simultaneously over a set of distributions and loss functions---we exploit connections to game dynamics to achieve state-of-the-art guarantees for a diverse set of multi-calibration learning problems. In addition to shedding light on existing multi-calibration guarantees and greatly simplifying their analysis, our approach also yields improved guarantees, such as error tolerances that scale with the square-root of group size versus the constant tolerances guaranteed by prior works, and improving the complexity of k -class multi-calibration by an exponential factor of k versus Gopalan et al.. Beyond multi-calibration, we use these game dynamics to address emerging considerations in the study of group fairness and multi-distribution learning.
Stein \Pi -Importance Sampling
Stein discrepancies have emerged as a powerful tool for retrospective improvement of Markov chain Monte Carlo output. However, the question of how to design Markov chains that are well-suited to such post-processing has yet to be addressed. This paper studies Stein importance sampling, in which weights are assigned to the states visited by a \Pi -invariant Markov chain to obtain a consistent approximation of P, the intended target. Surprisingly, the optimal choice of \Pi is not identical to the target P; we therefore propose an explicit construction for \Pi based on a novel variational argument. Explicit conditions for convergence of Stein \Pi -Importance Sampling are established. For \approx 70 % of tasks in the PosteriorDB benchmark, a significant improvement over the analogous post-processing of P -invariant Markov chains is reported.
Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer
Transformer architecture has shown impressive performance in multiple research domains and has become the backbone of many neural network models. However, there is limited understanding on how it works. In particular, with a simple predictive loss, how the representation emerges from the gradient \emph{training dynamics} remains a mystery. In this paper, for 1-layer transformer with one self-attention layer plus one decoder layer, we analyze its SGD training dynamics for the task of next token prediction in a mathematically rigorous manner. We open the black box of the dynamic process of how the self-attention layer combines input tokens, and reveal the nature of underlying inductive bias.
Your 'Eureka!' moments can be seen in brain scans
Breakthroughs, discoveries, and DIY tips sent every weekday. That euphoric feeling when a great idea strikes or a challenging puzzle piece fits into place is electric–and also helps our brains. Now, a team of researchers from the United States and Germany have taken a peek inside the brain to see what those so-called aha, lightbulb, or eureka moments look like. The new brain imaging shows that these flashes of insights reshape how the brain represents information and helps burn it into our memory. According to Maxi Becker, a study co-author and cognitive neuroscientist at Humboldt University in Berlin, if you have one of these aha moments when solving a problem, "you're actually more likely to remember the solution.'" The findings are detailed in a study published May 9 in the journal Nature Communications.