Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
ShareGPT4Video: Improving Video Understanding and Generation with Better Captions 2,4
We present the ShareGPT4Video series, aiming to facilitate the video understanding of large video-language models (LVLMs) and the video generation of text-to-video models (T2VMs) via dense and precise captions. To achieve this, taking aside the non-scalable costly human annotators, we find using GPT4V to caption video with a naive multi-frame or frame-concatenation input strategy leads to less detailed and sometimes temporal-confused results. We argue the challenge of designing a high-quality video captioning strategy lies in three aspects: 1) Inter-frame precise temporal change understanding.
Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models
While adversarial training has been extensively studied for ResNet architectures and low resolution datasets like CIFAR-10, much less is known for ImageNet. Given the recent debate about whether transformers are more robust than convnets, we revisit adversarial training on ImageNet comparing ViTs and ConvNeXts. Extensive experiments show that minor changes in architecture, most notably replacing PatchStem with ConvStem, and training scheme have a significant impact on the achieved robustness.
437d46a857214c997956eaf0e3b21a55-Supplemental.pdf
Agents trained by reinforcement learning (RL) often fail to generalize beyond the environment they were trained in, even when presented with new scenarios that seem similar to the training environment. We study the query complexity required to train RL agents that generalize to multiple environments. Intuitively, tractable generalization is only possible when the environments are similar or close in some sense. To capture this, we introduce Weak Proximity, a natural structural condition that requires the environments to have highly similar transition and reward functions and share a policy providing optimal value. Despite such shared structure, we prove that tractable generalization is impossible in the worst case. This holds even when each individual environment can be efficiently solved to obtain an optimal linear policy, and when the agent possesses a generative model. Our lower bound applies to the more complex task of representation learning for efficient generalization to multiple environments. On the positive side, we introduce Strong Proximity, a strengthened condition which we prove is sufficient for efficient generalization.
A Experimental details
Icosahedral MNIST We use node and edge neighbourhoods with k " 1. We find the edge neighbourhood isomorphism classes and for each class, the generators of the automorphism group using software package Nauty. The MNIST digit input is a trivial feature, each subsequent feature is a vector feature of the permutation group, except for the last layer, which is again trivial. We find a basis for the kernels statisfying the kernel contstraint using SVD. The parameters linearly combine these basis kernels into the kernel used for the convolution. The trivial baseline uses trivial features throughout, with is equivalent to a simple Graph Convolutional Network. The baseline uses 6 times wider channels, to compensate for the smaller representations. We did not optimize hyperparameters and have copied the architecture from Cohen et al. [2019]. We use 6 convolutional layers with output multiplicities 8, 16, 16, 23, 23,32, 64, with stride 1 at each second layer. After each convolution, we use ...
Natural Graph Networks Pim de Haan Taco Cohen Max Welling Qualcomm AI Research
A key requirement for graph neural networks is that they must process a graph in a way that does not depend on how the graph is described. Traditionally this has been taken to mean that a graph network must be equivariant to node permutations. Here we show that instead of equivariance, the more general concept of naturality is sufficient for a graph network to be well-defined, opening up a larger class of graph networks. We define global and local natural graph networks, the latter of which are as scalable as conventional message passing graph neural networks while being more flexible. We give one practical instantiation of a natural network on graphs which uses an equivariant message network parameterization, yielding good performance on several benchmarks.
OpenAI explores sign in with ChatGPT for other apps
You may soon be able to sign in to third party apps using ChatGPT -- but it probably won't be for a while yet. OpenAI recently shared a "Sign in with ChatGPT" interest form on its website, targeting developers who may be interested in the capability. "OpenAI is exploring ways for users to sign into third-party apps using their ChatGPT accounts," reads the page. "We're looking for developers interested in integrating this capability into their own apps." A preview of the experience is linked, along with a short form for interested developers to fill out.
Explaining V1 Properties with a Biologically Constrained Deep Learning Architecture
Convolutional neural networks (CNNs) have recently emerged as promising models of the ventral visual stream, despite their lack of biological specificity. While current state-of-the-art models of the primary visual cortex (V1) have surfaced from training with adversarial examples and extensively augmented data, these models are still unable to explain key neural properties observed in V1 that arise from biological circuitry. To address this gap, we systematically incorporated neurosciencederived architectural components into CNNs to identify a set of mechanisms and architectures that more comprehensively explain V1 activity. Upon enhancing task-driven CNNs with architectural components that simulate center-surround antagonism, local receptive fields, tuned normalization, and cortical magnification, we uncover models with latent representations that yield state-of-the-art explanation of V1 neural activity and tuning properties. Moreover, analyses of the learned parameters of these components and stimuli that maximally activate neurons of the evaluated networks provide support for their role in explaining neural properties of V1. Our results highlight an important advancement in the field of NeuroAI, as we systematically establish a set of architectural components that contribute to unprecedented explanation of V1. The neuroscience insights that could be gleaned from increasingly accurate in-silico models of the brain have the potential to greatly advance the fields of both neuroscience and artificial intelligence.