Well File:

Learning the Latent Causal Structure for Modeling Label Noise

Neural Information Processing Systems

In label-noise learning, the noise transition matrix reveals how an instance transitions from its clean label to its noisy label. Accurately estimating an instance's noise transition matrix is crucial for estimating its clean label. However, when only a noisy dataset is available, noise transition matrices can be estimated only for some "special" instances. To leverage these estimated transition matrices to help estimate the transition matrices of other instances, it is essential to explore relations between the matrices of these "special" instances and those of others. Existing studies typically build the relation by explicitly defining the similarity between the estimated noise transition matrices of "special" instances and those of other instances.



EGSST: Event-based Graph Spatiotemporal Sensitive Transformer for Object Detection Sheng Wu1 Hang Sheng 1 Hui Feng 1,2

Neural Information Processing Systems

Event cameras provide exceptionally high temporal resolution in dynamic vision systems due to their unique event-driven mechanism. However, the sparse and asynchronous nature of event data makes frame-based visual processing methods inappropriate. This study proposes a novel framework, Event-based Graph Spatiotemporal Sensitive Transformer (EGSST), for the exploitation of spatial and temporal properties of event data. Firstly, a well-designed graph structure is employed to model event data, which not only preserves the original temporal data but also captures spatial details. Furthermore, inspired by the phenomenon that human eyes pay more attention to objects that produce significant dynamic changes, we design a Spatiotemporal Sensitivity Module (SSM) and an adaptive Temporal Activation Controller (TAC).




Xiao Ding Ting Liu Bing Qin

Neural Information Processing Systems

Large language models (LLMs) have developed impressive performance and strong explainability across various reasoning scenarios, marking a significant stride towards mimicking human-like intelligence. Despite this, when tasked with several simple questions supported by a generic fact, LLMs often struggle to abstract and apply the generic fact to provide consistent and precise answers, revealing a deficiency in abstract reasoning abilities. This has sparked a vigorous debate about whether LLMs are genuinely reasoning or merely memorizing. In light of this, we design a preliminary study to quantify and delve into the abstract reasoning abilities of existing LLMs. Our findings reveal a substantial discrepancy between their general reasoning and abstract reasoning performances. To relieve this problem, we tailor an abstract reasoning dataset (AbsR) together with a meaningful learning paradigm to teach LLMs how to leverage generic facts for reasoning purposes. The results show that our approach not only boosts the general reasoning performance of LLMs but also makes considerable strides towards their capacity for abstract reasoning, moving beyond simple memorization or imitation to a more nuanced understanding and application of generic facts.


Efficient Submodular Optimization under Noise: Local Search is Robust

Neural Information Processing Systems

The problem of monotone submodular maximization has been studied extensively due to its wide range of applications. However, there are cases where one can only access the objective function in a distorted or noisy form because of the uncertain nature or the errors involved in the evaluation. This paper considers the problem of constrained monotone submodular maximization with noisy oracles introduced by [11].




Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes Yunyue Wei 1, Vincent Zhuang, Yanan Sui

Neural Information Processing Systems

Bayesian optimization is an effective technique for black-box optimization, but its applicability is typically limited to low-dimensional and small-budget problems due to the cubic complexity of computing the Gaussian process (GP) surrogate. While various approximate GP models have been employed to scale Bayesian optimization to larger sample sizes, most suffer from overlysmooth estimation and focus primarily on problems that allow for large online samples. In this work, we argue that Bayesian optimization algorithms with sparse GPs can more efficiently allocate their representational power to relevant regions of the search space. To achieve this, we propose focalized GP, which leverages a novel variational loss function to achieve stronger local prediction, as well as FocalBO, which hierarchically optimizes the focalized GP acquisition function over progressively smaller search spaces. Experimental results demonstrate that FocalBO can efficiently leverage large amounts of offline and online data to achieve state-of-the-art performance on robot morphology design and to control a 585-dimensional musculoskeletal system.