Well File:


CogVLM: Visual Expert for Pretrained Language Models

Neural Information Processing Systems

We introduce CogVLM, a powerful open-source visual language foundation model. Different from the popular shallow alignment method which maps image features into the input space of language model, CogVLM bridges the gap between the frozen pretrained language model and image encoder by a trainable visual expert module in the attention and FFN layers. As a result, CogVLM enables a deep fusion of vision language features without sacrificing any performance on NLP tasks.



Conformalized Time Series with Semantic Features

Neural Information Processing Systems

Conformal prediction is a powerful tool for uncertainty quantification, but its application to time-series data is constrained by the violation of the exchangeability assumption. Current solutions for time-series prediction typically operate in the output space and rely on manually selected weights to address distribution drift, leading to overly conservative predictions. To enable dynamic weight learning in the semantically rich latent space, we introduce a novel approach called Conformalized Time Series with Semantic Features (CT-SSF). CT-SSF utilizes the inductive bias in deep representation learning to dynamically adjust weights, prioritizing semantic features relevant to the current prediction. Theoretically, we show that CT-SSF surpasses previous methods defined in the output space. Experiments on synthetic and benchmark datasets demonstrate that CT-SSF significantly outperforms existing state-of-the-art (SOTA) conformal prediction techniques in terms of prediction efficiency while maintaining a valid coverage guarantee.


Sounding Bodies: Modeling 3D Spatial Sound of Humans Using Body Pose and Audio

Neural Information Processing Systems

While 3D human body modeling has received much attention in computer vision, modeling the acoustic equivalent, i.e. modeling 3D spatial audio produced by body motion and speech, has fallen short in the community. To close this gap, we present a model that can generate accurate 3D spatial audio for full human bodies. The system consumes, as input, audio signals from headset microphones and body pose, and produces, as output, a 3D sound field surrounding the transmitter's body, from which spatial audio can be rendered at any arbitrary position in the 3D space. We collect a first-of-its-kind multimodal dataset of human bodies, recorded with multiple cameras and a spherical array of 345 microphones. In an empirical evaluation, we demonstrate that our model can produce accurate body-induced sound fields when trained with a suitable loss. Dataset and code are available online.


Toward Semantic Gaze Target Detection Anshul Gupta Idiap Research Institute Jean-Marc Odobez Idiap Research Institute

Neural Information Processing Systems

From the onset of infanthood, humans naturally develop the ability to closely observe and interpret the visual gaze of others. This skill, known as gaze following, holds significance in developmental theory as it enables us to grasp another person's mental state, emotions, intentions, and more [6]. In computer vision, gaze following is defined as the prediction of the pixel coordinates where a person in the image is focusing their attention. Existing methods in this research area have predominantly centered on pinpointing the gaze target by predicting a gaze heatmap or gaze point. However, a notable drawback of this approach is its limited practical value in gaze applications, as mere localization may not fully capture our primary interest -- understanding the underlying semantics, such as the nature of the gaze target, rather than just its 2D pixel location. To address this gap, we extend the gaze following task, and introduce a novel architecture that simultaneously predicts the localization and semantic label of the gaze target. We devise a pseudo-annotation pipeline for the GazeFollow dataset, propose a new benchmark, develop an experimental protocol and design a suitable baseline for comparison. Our method sets a new state-of-the-art on the main GazeFollow benchmark for localization and achieves competitive results in the recognition task on both datasets compared to the baseline, with 40% fewer parameters.



ST-Adapter: Parameter-Efficient Image-to-Video Transfer Learning

Neural Information Processing Systems

Capitalizing on large pre-trained models for various downstream tasks of interest have recently emerged with promising performance. Due to the ever-growing model size, the standard full fine-tuning based task adaptation strategy becomes prohibitively costly in terms of model training and storage. This has led to a new research direction in parameter-efficient transfer learning. However, existing attempts typically focus on downstream tasks from the same modality (e.g., image understanding) of the pre-trained model. This creates a limit because in some specific modalities, (e.g., video understanding) such a strong pre-trained model with sufficient knowledge is less or not available. In this work, we investigate such a novel cross-modality transfer learning setting, namely parameter-efficient image-to-video transfer learning. To solve this problem, we propose a new Spatio-Temporal Adapter (ST-Adapter) for parameter-efficient fine-tuning per video task. With a built-in spatio-temporal reasoning capability in a compact design, ST-Adapter enables a pre-trained image model without temporal knowledge to reason about dynamic video content at a small ( 8%) per-task parameter cost, requiring approximately 20 times fewer updated parameters compared to previous work. Extensive experiments on video action recognition tasks show that our ST-Adapter can match or even outperform the strong full fine-tuning strategy and state-of-theart video models, whilst enjoying the advantage of parameter efficiency.


Appendix for Wukong: A100 Million Large-scale Chinese Cross-modal Pretraining Benchmark A Examples in Wukong Dataset

Neural Information Processing Systems

A diverse range of concepts are included. Figure 2: The word cloud generated with texts in Wukong dataset. For example, " 月 " means month; " 日 " is day; " 做 " is do and " 一个 " means one. Figure 1 shows some examples in our dataset. These image-text pairs involve many types of content, e.g., social news, sporting events, product introduction, et al.