Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
VeXKD: The Versatile Integration of Cross-Modal Fusion and Knowledge Distillation for 3D Perception
Recent advancements in 3D perception have led to a proliferation of network architectures, particularly those involving multi-modal fusion algorithms. While these fusion algorithms improve accuracy, their complexity often impedes real-time performance. This paper introduces VeXKD, an effective and Versatile framework that integrates Cross-Modal Fusion with Knowledge Distillation. VeXKD applies knowledge distillation exclusively to the Bird's Eye View (BEV) feature maps, enabling the transfer of cross-modal insights to single-modal students without additional inference time overhead. It avoids volatile components that can vary across various 3D perception tasks and student modalities, thus improving versatility. The framework adopts a modality-general cross-modal fusion module to bridge the modality gap between the multi-modal teachers and single-modal students. Furthermore, leveraging byproducts generated during fusion, our BEV query guided mask generation network identifies crucial spatial locations across different BEV feature maps from different tasks and semantic levels in a datadriven manner, significantly enhancing the effectiveness of knowledge distillation. Extensive experiments on the nuScenes dataset demonstrate notable improvements, with up to 6.9%/4.2%
Robust Calibration with Multi-domain Temperature Scaling
Uncertainty quantification is essential for the reliable deployment of machine learning models to high-stakes application domains. Uncertainty quantification is all the more challenging when training distribution and test distribution are different, even if the distribution shifts are mild. Despite the ubiquity of distribution shifts in real-world applications, existing uncertainty quantification approaches mainly study the in-distribution setting where the train and test distributions are the same. In this paper, we develop a systematic calibration model to handle distribution shifts by leveraging data from multiple domains. Our proposed method--multi-domain temperature scaling--uses the heterogeneity in the domains to improve calibration robustness under distribution shift. Through experiments on three benchmark data sets, we find our proposed method outperforms existing methods as measured on both in-distribution and out-of-distribution test sets.
Reconstruct and Match: Out-of-Distribution Robustness via Topological Homogeneity Chaoqi Chen 1 Luyao Tang 2 Hui Huang College of Computer Science and Software Engineering, Shenzhen University
Since deep learning models are usually deployed in non-stationary environments, it is imperative to improve their robustness to out-of-distribution (OOD) data. A common approach to mitigate distribution shift is to regularize internal representations or predictors learned from in-distribution (ID) data to be domain invariant. Past studies have primarily learned pairwise invariances, ignoring the intrinsic structure and high-order dependencies of the data. Unlike machines, humans recognize objects by first dividing them into major components and then identifying the topological relation of these components. Motivated by this, we propose Reconstruct and Match (REMA), a general learning framework for object recognition tasks to endow deep models with the capability of capturing the topological homogeneity of objects without human prior knowledge or fine-grained annotations. To identify major components from objects, REMA introduces a selective slotbased reconstruction module to dynamically map dense pixels into a sparse and discrete set of slot vectors in an unsupervised manner. Then, to model high-order dependencies among these components, we propose a hypergraph-based relational reasoning module that models the intricate relations of nodes (slots) with structural constraints. Experiments on standard benchmarks show that REMA outperforms state-of-the-art methods in OOD generalization and test-time adaptation settings.
TabMT: Generating Tabular data with Masked Transformers
Autoregressive and Masked Transformers are incredibly effective as generative models and classifiers. While these models are most prevalent in NLP, they also exhibit strong performance in other domains, such as vision. This work contributes to the exploration of transformer-based models in synthetic data generation for diverse application domains.
These games were indie smash hits โ but what happened next?
It is now more or less impossible to put a precise figure on the number of video games released each year. According to data published by the digital store Steam, almost 19,000 titles were released in 2024 โ and that's just on one platform. Hundreds more arrived on consoles and smartphones. In some ways this is the positive sign of a vibrant industry, but how on earth does a new project get noticed? When Triple A titles with multimillion dollar marketing budgets are finding it hard to gain attention (disappointing sales have been reported for Dragon Age: The Veilguard, the Final Fantasy VII remakes and EA Sports FC), what chance is there for a small team to break out?
Improved Algorithms for Neural Active Learning
We improve the theoretical and empirical performance of neural-network(NN)- based active learning algorithms for the non-parametric streaming setting. In particular, we introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work. Then, the proposed algorithm leverages the powerful representation of NNs for both exploitation and exploration, has the query decision-maker tailored for k-class classification problems with the performance guarantee, utilizes the full feedback, and updates parameters in a more practical and efficient manner. These careful designs lead to an instance-dependent regret upper bound, roughly improving by a multiplicative factor O(log T) and removing the curse of input dimensionality. Furthermore, we show that the algorithm can achieve the same performance as the Bayes-optimal classifier in the long run under the hard-margin setting in classification problems. In the end, we use extensive experiments to evaluate the proposed algorithm and SOTA baselines, to show the improved empirical performance.
IMPACT: A Large-scale Integrated Multimodal Patent Analysis and Creation Dataset for Design Patents
Our dataset includes half a million design patents comprising 3.61 million figures along with captions from patents granted by the United States Patent and Trademark Office (USPTO) over a 16-year period from 2007 to 2022. We incorporate the metadata of each patent application with elaborate captions that are coherent with multiple viewpoints of designs. Even though patents themselves contain a variety of design figures, titles, and descriptions of viewpoints, we find that they lack detailed descriptions that are necessary to perform multimodal tasks such as classification and retrieval.