Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
e10a6a906ef323efaf708f76cf3c1d1e-Paper-Conference.pdf
Owing to advancements in image synthesis techniques, stylization methodologies for large models have garnered remarkable outcomes. However, when it comes to processing facial images, the outcomes frequently fall short of expectations. Facial stylization is predominantly challenged by two significant hurdles. Firstly, obtaining a large dataset of high-quality stylized images is difficult. The scarcity and diversity of artistic styles make it impractical to compile comprehensive datasets for each style.
Forecasting Future World Events with Neural Networks
Andy Zou, Tristan Xiao, Ryan Jia, Joe Kwon, Mantas Mazeika, Richard Li, Dawn Song, Jacob Steinhardt, Owain Evans, Dan Hendrycks
Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future).
FairWire: Fair Graph Generation
Machine learning over graphs has recently attracted growing attention due to its ability to analyze and learn complex relations within critical interconnected systems. However, the disparate impact that is amplified by the use of biased graph structures in these algorithms has raised significant concerns for their deployment in realworld decision systems. In addition, while synthetic graph generation has become pivotal for privacy and scalability considerations, the impact of generative learning algorithms on structural bias has not yet been investigated. Motivated by this, this work focuses on the analysis and mitigation of structural bias for both real and synthetic graphs. Specifically, we first theoretically analyze the sources of structural bias that result in disparity for the predictions of dyadic relations. To alleviate the identified bias factors, we design a novel fairness regularizer that offers a versatile use. Faced with the bias amplification in graph generation models brought to light in this work, we further propose a fair graph generation framework, FairWire, by leveraging our fair regularizer design in a generative model. Experimental results on real-world networks validate that the proposed tools herein deliver effective structural bias mitigation for both real and synthetic graphs.
Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers
One of the roadblocks for training generalist robotic models today is heterogeneity. Previous robot learning methods often collect data to train with one specific embodiment for one task, which is expensive and prone to overfitting. This work studies the problem of learning policy representations through heterogeneous pretraining on robot data across different embodiments and tasks at scale. We propose Heterogeneous Pre-trained Transformers (HPT), which pre-train a large, shareable trunk of a policy neural network to learn a task and embodiment agnostic shared representation. This general architecture aligns the specific proprioception and vision inputs from distinct embodiments to a short sequence of tokens and then processes such tokens to map to control robots for different tasks. Leveraging the recent large-scale multi-embodiment real-world robotic datasets as well as simulation, deployed robots, and human video datasets, we investigate pre-training policies across heterogeneity. We conduct experiments to investigate the scaling behaviors of training objectives, to the extent of 52 datasets. HPTs outperform several baselines and enhance the fine-tuned policy performance by over 20% on unseen tasks in multiple simulator benchmarks and real-world settings.
A Appendix, we know that Q (| Z
A.1 Algorithm for Learning Categorical Data The over all training algorithm for learning categorical generative models is similar to the other cases. A.2 Practical Algorithm We give a detailed practical algorithm. N(0,I) is a standard Gaussian noise. A simplified loss Similar to Song and Ermon [41], Ho et al. [18], we use a stochastic version of loss (15), in which we only uniformly sample temporal snapshots to compute the loss. Apply gradient descent to update .
First Hitting Diffusion Models for Generating Manifold, Graph and Categorical Data
We propose a family of First Hitting Diffusion Models (FHDM), deep generative models that generate data with a diffusion process that terminates at a random first hitting time. This yields an extension of the standard fixed-time diffusion models that terminate at a pre-specified deterministic time. Although standard diffusion models are designed for continuous unconstrained data, FHDM is naturally designed to learn distributions on continuous as well as a range of discrete and structure domains. Moreover, FHDM enables instance-dependent terminate time and accelerates the diffusion process to sample higher quality data with fewer diffusion steps. Technically, we train FHDM by maximum likelihood estimation on diffusion trajectories augmented from observed data with conditional first hitting processes (i.e., bridge) derived based on Doob's h-transform, deviating from the commonly used time-reversal mechanism. We apply FHDM to generate data in various domains such as point cloud (general continuous distribution), climate and geographical events on earth (continuous distribution on the sphere), unweighted graphs (distribution of binary matrices), and segmentation maps of 2D images (high-dimensional categorical distribution). We observe considerable improvement compared with the state-of-the-art approaches in both quality and speed.
LoCo: Learning 3D Location-Consistent Image Features with a Memory-Efficient Ranking Loss
Image feature extractors are rendered substantially more useful if different views of the same 3D location yield similar features while still being distinct from other locations. A feature extractor that achieves this goal even under significant viewpoint changes must recognise not just semantic categories in a scene, but also understand how different objects relate to each other in three dimensions. Existing work addresses this task by posing it as a patch retrieval problem, training the extracted features to facilitate retrieval of all image patches that project from the same 3D location. However, this approach uses a loss formulation that requires substantial memory and computation resources, limiting its applicability for largescale training. We present a method for memory-efficient learning of locationconsistent features that reformulates and approximates the smooth average precision objective.
Accuracy is Not All You Need Sanjeev Krishnan Microsoft Research
When Large Language Models (LLMs) are compressed using techniques such as quantization, the predominant way to demonstrate the validity of such techniques is by measuring the model's accuracy on various benchmarks. If the accuracies of the baseline model and the compressed model are close, it is assumed that there was negligible degradation in quality. However, even when the accuracies of the baseline and compressed model are similar, we observe the phenomenon of flips, wherein answers change from correct to incorrect and vice versa in proportion. We conduct a detailed study of metrics across multiple compression techniques, models and datasets, demonstrating that the behavior of compressed models as visible to end-users is often significantly different from the baseline model, even when accuracy is similar. We further evaluate compressed models both qualitatively and quantitatively using MT-Bench and show that compressed models exhibiting high flips are worse than baseline models in this free-form generative task. Thus, we argue that accuracy and perplexity are necessary but not sufficient for evaluating compressed models, since these metrics hide large underlying changes that have not been observed by previous work. Hence, compression techniques should also be evaluated using distance metrics. We propose two such distance metrics, KL-Divergence and % flips, and show that they are well correlated.