Well File:

Robust Reinforcement Learning from Corrupted Human Feedback

Neural Information Processing Systems

Reinforcement learning from human feedback (RLHF) provides a principled framework for aligning AI systems with human preference data. For various reasons, e.g., personal bias, context ambiguity, lack of training, etc, human annotators may give incorrect or inconsistent preference labels.


LLM Dataset Inference: Did you train on my dataset? Nicolas Papernot 3,4 Adam Dziedzic

Neural Information Processing Systems

Recent works have presented methods to identify if individual text sequences were members of the model's training data, known as membership inference attacks (MIAs). We demonstrate that the apparent success of these MIAs is confounded by selecting non-members (text sequences not used for training) belonging to a different distribution from the members (e.g., temporally shifted recent Wikipedia articles compared with ones used to train the model). This distribution shift makes membership inference appear successful. However, most MIA methods perform no better than random guessing when discriminating between members and non-members from the same distribution (e.g., in this case, the same period of time). Even when MIAs work, we find that different MIAs succeed at inferring membership of samples from different distributions. Instead, we propose a new dataset inference method to accurately identify the datasets used to train large language models.


AGD: an Auto-switchable Optimizer using Stepwise Gradient Difference for Preconditioning Matrix

Neural Information Processing Systems

Adaptive optimizers, such as Adam, have achieved remarkable success in deep learning. A key component of these optimizers is the so-called preconditioning matrix, providing enhanced gradient information and regulating the step size of each gradient direction. In this paper, we propose a novel approach to designing the preconditioning matrix by utilizing the gradient difference between two successive steps as the diagonal elements. These diagonal elements are closely related to the Hessian and can be perceived as an approximation of the inner product between the Hessian row vectors and difference of the adjacent parameter vectors. Additionally, we introduce an auto-switching function that enables the preconditioning matrix to switch dynamically between Stochastic Gradient Descent (SGD) and the adaptive optimizer. Based on these two techniques, we develop a new optimizer named AGD that enhances the generalization performance. We evaluate AGD on public datasets of Natural Language Processing (NLP), Computer Vision (CV), and Recommendation Systems (RecSys). Our experimental results demonstrate that AGD outperforms the state-of-the-art (SOTA) optimizers, achieving highly competitive or significantly better predictive performance. Furthermore, we analyze how AGD is able to switch automatically between SGD and the adaptive optimizer and its actual effects on various scenarios.


Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing Federico Errica

Neural Information Processing Systems

The ability to perform fast and accurate atomistic simulations is crucial for advancing the chemical sciences. By learning from high-quality data, machine-learned interatomic potentials achieve accuracy on par with ab initio and first-principles methods at a fraction of their computational cost. The success of machine-learned interatomic potentials arises from integrating inductive biases such as equivariance to group actions on an atomic system, e.g., equivariance to rotations and reflections. In particular, the field has notably advanced with the emergence of equivariant message passing. Most of these models represent an atomic system using spherical tensors, tensor products of which require complicated numerical coefficients and can be computationally demanding. Cartesian tensors offer a promising alternative, though state-of-the-art methods lack flexibility in message-passing mechanisms, restricting their architectures and expressive power. This work explores higher-rank irreducible Cartesian tensors to address these limitations. We integrate irreducible Cartesian tensor products into message-passing neural networks and prove the equivariance and traceless property of the resulting layers. Through empirical evaluations on various benchmark data sets, we consistently observe on-par or better performance than that of state-of-the-art spherical and Cartesian models.


Rethinking the Capacity of Graph Neural Networks for Branching Strategy

Neural Information Processing Systems

Graph neural networks (GNNs) have been widely used to predict properties and heuristics of mixed-integer linear programs (MILPs) and hence accelerate MILP solvers. This paper investigates the capacity of GNNs to represent strong branching (SB), the most effective yet computationally expensive heuristic employed in the branch-and-bound algorithm. In the literature, message-passing GNN (MP-GNN), as the simplest GNN structure, is frequently used as a fast approximation of SB and we find that not all MILPs's SB can be represented with MP-GNN. We precisely define a class of "MP-tractable" MILPs for which MP-GNNs can accurately approximate SB scores. Particularly, we establish a universal approximation theorem: for any data distribution over the MP-tractable class, there always exists an MP-GNN that can approximate the SB score with arbitrarily high accuracy and arbitrarily high probability, which lays a theoretical foundation of the existing works on imitating SB with MP-GNN. For MILPs without the MP-tractability, unfortunately, a similar result is impossible, which can be illustrated by two MILP instances with different SB scores that cannot be distinguished by any MP-GNN, regardless of the number of parameters. Recognizing this, we explore another GNN structure called the second-order folklore GNN (2-FGNN) that overcomes this limitation, and the aforementioned universal approximation theorem can be extended to the entire MILP space using 2-FGNN, regardless of the MP-tractability. A small-scale numerical experiment is conducted to directly validate our theoretical findings.



Metric Space Magnitude for Evaluating the Diversity of Latent Representations

Neural Information Processing Systems

The magnitude of a metric space is a novel invariant that provides a measure of the'effective size' of a space across multiple scales, while also capturing numerous geometrical properties, such as curvature, density, or entropy. We develop a family of magnitude-based measures of the intrinsic diversity of latent representations, formalising a novel notion of dissimilarity between magnitude functions of finite metric spaces. Our measures are provably stable under perturbations of the data, can be efficiently calculated, and enable a rigorous multi-scale characterisation and comparison of latent representations. We show their utility and superior performance across different domains and tasks, including (i) the automated estimation of diversity, (ii) the detection of mode collapse, and (iii) the evaluation of generative models for text, image, and graph data.


Can Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?

Neural Information Processing Systems

This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, GPT-3.5 drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods.


Reconstructing the Image Stitching Pipeline: Integrating Fusion and Rectangling into a Unified Inpainting Model

Neural Information Processing Systems

Deep learning-based image stitching pipelines are typically divided into three cascading stages: registration, fusion, and rectangling. Each stage requires its own network training and is tightly coupled to the others, leading to error propagation and posing significant challenges to parameter tuning and system stability. This paper proposes the Simple and Robust Stitcher (SRStitcher), which revolutionizes the image stitching pipeline by simplifying the fusion and rectangling stages into a unified inpainting model, requiring no model training or fine-tuning. We reformulate the problem definitions of the fusion and rectangling stages and demonstrate that they can be effectively integrated into an inpainting task. Furthermore, we design the weighted masks to guide the reverse process in a pre-trained largescale diffusion model, implementing this integrated inpainting task in a single inference. Through extensive experimentation, we verify the interpretability and generalization capabilities of this unified model, demonstrating that SRStitcher outperforms state-of-the-art methods in both performance and stability.