Well File:


Reconstruct and Match: Out-of-Distribution Robustness via Topological Homogeneity Chaoqi Chen 1 Luyao Tang 2 Hui Huang College of Computer Science and Software Engineering, Shenzhen University

Neural Information Processing Systems

Since deep learning models are usually deployed in non-stationary environments, it is imperative to improve their robustness to out-of-distribution (OOD) data. A common approach to mitigate distribution shift is to regularize internal representations or predictors learned from in-distribution (ID) data to be domain invariant. Past studies have primarily learned pairwise invariances, ignoring the intrinsic structure and high-order dependencies of the data. Unlike machines, humans recognize objects by first dividing them into major components and then identifying the topological relation of these components. Motivated by this, we propose Reconstruct and Match (REMA), a general learning framework for object recognition tasks to endow deep models with the capability of capturing the topological homogeneity of objects without human prior knowledge or fine-grained annotations. To identify major components from objects, REMA introduces a selective slotbased reconstruction module to dynamically map dense pixels into a sparse and discrete set of slot vectors in an unsupervised manner. Then, to model high-order dependencies among these components, we propose a hypergraph-based relational reasoning module that models the intricate relations of nodes (slots) with structural constraints. Experiments on standard benchmarks show that REMA outperforms state-of-the-art methods in OOD generalization and test-time adaptation settings.


TabMT: Generating Tabular data with Masked Transformers

Neural Information Processing Systems

Autoregressive and Masked Transformers are incredibly effective as generative models and classifiers. While these models are most prevalent in NLP, they also exhibit strong performance in other domains, such as vision. This work contributes to the exploration of transformer-based models in synthetic data generation for diverse application domains.


These games were indie smash hits – but what happened next?

The Guardian

It is now more or less impossible to put a precise figure on the number of video games released each year. According to data published by the digital store Steam, almost 19,000 titles were released in 2024 – and that's just on one platform. Hundreds more arrived on consoles and smartphones. In some ways this is the positive sign of a vibrant industry, but how on earth does a new project get noticed? When Triple A titles with multimillion dollar marketing budgets are finding it hard to gain attention (disappointing sales have been reported for Dragon Age: The Veilguard, the Final Fantasy VII remakes and EA Sports FC), what chance is there for a small team to break out?



Improved Algorithms for Neural Active Learning

Neural Information Processing Systems

We improve the theoretical and empirical performance of neural-network(NN)- based active learning algorithms for the non-parametric streaming setting. In particular, we introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work. Then, the proposed algorithm leverages the powerful representation of NNs for both exploitation and exploration, has the query decision-maker tailored for k-class classification problems with the performance guarantee, utilizes the full feedback, and updates parameters in a more practical and efficient manner. These careful designs lead to an instance-dependent regret upper bound, roughly improving by a multiplicative factor O(log T) and removing the curse of input dimensionality. Furthermore, we show that the algorithm can achieve the same performance as the Bayes-optimal classifier in the long run under the hard-margin setting in classification problems. In the end, we use extensive experiments to evaluate the proposed algorithm and SOTA baselines, to show the improved empirical performance.


IMPACT: A Large-scale Integrated Multimodal Patent Analysis and Creation Dataset for Design Patents

Neural Information Processing Systems

Our dataset includes half a million design patents comprising 3.61 million figures along with captions from patents granted by the United States Patent and Trademark Office (USPTO) over a 16-year period from 2007 to 2022. We incorporate the metadata of each patent application with elaborate captions that are coherent with multiple viewpoints of designs. Even though patents themselves contain a variety of design figures, titles, and descriptions of viewpoints, we find that they lack detailed descriptions that are necessary to perform multimodal tasks such as classification and retrieval.



ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization Karsten Roth

Neural Information Processing Systems

Text-to-Image (T2I) models have made significant advancements in recent years, but they still struggle to accurately capture intricate details specified in complex compositional prompts. While fine-tuning T2I models with reward objectives has shown promise, it suffers from "reward hacking" and may not generalize well to unseen prompt distributions. In this work, we propose Reward-based Noise Optimization (ReNO), a novel approach that enhances T2I models at inference by optimizing the initial noise based on the signal from one or multiple human preference reward models. Remarkably, solving this optimization problem with gradient ascent for 50 iterations yields impressive results on four different onestep models across two competitive benchmarks, T2I-CompBench and GenEval. Within a computational budget of 20-50 seconds, ReNO-enhanced one-step models consistently surpass the performance of all current open-source Text-to-Image models. Extensive user studies demonstrate that our model is preferred nearly twice as often compared to the popular SDXL model and is on par with the proprietary Stable Diffusion 3 with 8B parameters. Moreover, given the same computational resources, a ReNO-optimized one-step model outperforms widelyused open-source models such as SDXL and PixArt-α, highlighting the efficiency and effectiveness of ReNO in enhancing T2I model performance at inference time.


Instance-adaptive Zero-shot Chain-of-Thought Prompting Xiaosong Yuan

Neural Information Processing Systems

Zero-shot Chain-of-Thought (CoT) prompting emerges as a simple and effective strategy for enhancing the performance of large language models (LLMs) in realworld reasoning tasks. Nonetheless, the efficacy of a singular, task-level prompt uniformly applied across the whole of instances is inherently limited since one prompt cannot be a good partner for all, a more appropriate approach should consider the interaction between the prompt and each instance meticulously. This work introduces an instance-adaptive prompting algorithm as an alternative zero-shot CoT reasoning scheme by adaptively differentiating good and bad prompts. Concretely, we first employ analysis on LLMs through the lens of information flow to detect the mechanism under zero-shot CoT reasoning, in which we discover that information flows from question to prompt and question to rationale jointly influence the reasoning results most. We notice that a better zero-shot CoT reasoning needs the prompt to obtain semantic information from the question, and then the rationale aggregates sufficient information from the question directly and via the prompt indirectly. On the contrary, lacking any of those would probably lead to a bad one. Stem from that, we further propose an instance-adaptive prompting strategy (IAP) for zero-shot CoT reasoning. Experiments conducted with LLaMA-2, LLaMA-3, and Qwen on math, logic, and commonsense reasoning tasks (e.g., GSM8k, MMLU, Causal Judgement) obtain consistent improvement, demonstrating that the instance-adaptive zero-shot CoT prompting performs better than other task-level methods with some curated prompts or sophisticated procedures, showing the significance of our findings in the zero-shot CoT reasoning mechanism.