Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
No Change, No Gain: Empowering Graph Neural Networks with Expected Model Change Maximization for Active Learning
Graph Neural Networks (GNNs) are crucial for machine learning applications with graph-structured data, but their success depends on sufficient labeled data. We present a novel active learning (AL) method for GNNs, extending the Expected Model Change Maximization (EMCM) principle to improve prediction performance on unlabeled data. By presenting a Bayesian interpretation for the node embeddings generated by GNNs under the semi-supervised setting, we efficiently compute the closed-form EMCM acquisition function as the selection criterion for AL without re-training.
Frustratingly Easy Test-Time Adaptation of Vision-Language Models Matteo Farina 1, Giovanni Iacca 1 Massimiliano Mancini 1
Vision-Language Models seamlessly discriminate among arbitrary semantic categories, yet they still suffer from poor generalization when presented with challenging examples. For this reason, Episodic Test-Time Adaptation (TTA) strategies have recently emerged as powerful techniques to adapt VLMs in the presence of a single unlabeled image. The recent literature on TTA is dominated by the paradigm of prompt tuning by Marginal Entropy Minimization, which, relying on online backpropagation, inevitably slows down inference while increasing memory. In this work, we theoretically investigate the properties of this approach and unveil that a surprisingly strong TTA method lies dormant and hidden within it.
TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series Alexander Nikitin Samuel Kaski Department of Computer Science, Aalto University
Time series data are essential in a wide range of machine learning (ML) applications. However, temporal data are often scarce or highly sensitive, limiting data sharing and the use of data-intensive ML methods. A possible solution to this problem is the generation of synthetic datasets that resemble real data. In this work, we introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling and evaluation of synthetic time series datasets. TSGM includes a broad repertoire of machine learning methods: generative models, probabilistic, simulation-based approaches, and augmentation techniques. The framework enables users to evaluate the quality of the produced data from different angles: similarity, downstream effectiveness, predictive consistency, diversity, fairness, and privacy. TSGM is extensible and user-friendly, which allows researchers to rapidly implement their own methods and compare them in a shareable environment. The framework has been tested on open datasets and in production and proved to be beneficial in both cases.
Almost Minimax Optimal Best Arm Identification in Piecewise Stationary Linear Bandits
We propose a novel piecewise stationary linear bandit (PSLB) model, where the environment randomly samples a context from an unknown probability distribution at each changepoint, and the quality of an arm is measured by its return averaged over all contexts. The contexts and their distribution, as well as the changepoints are unknown to the agent.
An Image is Worth 32 Tokens for Reconstruction and Generation, Mark Weber
Recent advancements in generative models have highlighted the crucial role of image tokenization in the efficient synthesis of high-resolution images. Tokenization, which transforms images into latent representations, reduces computational demands compared to directly processing pixels and enhances the effectiveness and efficiency of the generation process. Prior methods, such as VQGAN, typically utilize 2D latent grids with fixed downsampling factors. However, these 2D tokenizations face challenges in managing the inherent redundancies present in images, where adjacent regions frequently display similarities. To overcome this issue, we introduce Transformer-based 1-Dimensional Tokenizer (TiTok), an innovative approach that tokenizes images into 1D latent sequences. TiTok provides a more compact latent representation, yielding substantially more efficient and effective representations than conventional techniques. For example, a 256 256 3 image can be reduced to just 32 discrete tokens, a significant reduction from the 256 or 1024 tokens obtained by prior methods. Despite its compact nature, TiTok achieves competitive performance to state-of-the-art approaches.