Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities Hao Dong 1 Yue Zhao 2 Olga Fink
Detecting out-of-distribution (OOD) samples is important for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. Existing research has mainly focused on unimodal scenarios on image data. However, real-world applications are inherently multimodal, which makes it essential to leverage information from multiple modalities to enhance the efficacy of OOD detection. To establish a foundation for more realistic Multimodal OOD Detection, we introduce the first-of-its-kind benchmark, MultiOOD, characterized by diverse dataset sizes and varying modality combinations. We first evaluate existing unimodal OOD detection algorithms on MultiOOD, observing that the mere inclusion of additional modalities yields substantial improvements. This underscores the importance of utilizing multiple modalities for OOD detection. Based on the observation of Modality Prediction Discrepancy between in-distribution (ID) and OOD data, and its strong correlation with OOD performance, we propose the Agree-to-Disagree (A2D) algorithm to encourage such discrepancy during training. Moreover, we introduce a novel outlier synthesis method, NP-Mix, which explores broader feature spaces by leveraging the information from nearest neighbor classes and complements A2D to strengthen OOD detection performance. Extensive experiments on MultiOOD demonstrate that training with A2D and NP-Mix improves existing OOD detection algorithms by a large margin.
A Robust and Opponent-Aware League Training Method for StarCraft II
It is extremely difficult to train a superhuman Artificial Intelligence (AI) for games of similar size to StarCraft II. AlphaStar is the first AI that beat human professionals in the full game of StarCraft II, using a league training framework that is inspired by a game-theoretic approach. In this paper, we improve AlphaStar's league training in two significant aspects. We train goal-conditioned exploiters, whose abilities of spotting weaknesses in the main agent and the entire league are greatly improved compared to the unconditioned exploiters in AlphaStar. In addition, we endow the agents in the league with the new ability of opponent modeling, which makes the agent more responsive to the opponent's real-time strategy. Based on these improvements, we train a better and superhuman AI with orders of magnitude less resources than AlphaStar (see Table 1 for a full comparison). Considering the iconic role of StarCraft II in game AI research, we believe our method and results on StarCraft II provide valuable design principles on how one would utilize the general league training framework for obtaining a least-exploitable strategy in various, large-scale, real-world games.
Toward Real Ultra Image Segmentation: Leveraging Surrounding Context to Cultivate General Segmentation Model
Existing ultra image segmentation methods suffer from two major challenges, namely the scalability issue (i.e. they lack the stability and generality of standard segmentation models, as they are tailored to specific datasets), and the architectural issue (i.e. they are incompatible with real-world ultra image scenes, as they compromise between image size and computing resources). To tackle these issues, we revisit the classic sliding inference framework, upon which we propose a Surrounding Guided Segmentation framework (SGNet) for ultra image segmentation. The SGNet leverages a larger area around each image patch to refine the general segmentation results of local patches. Specifically, we propose a surrounding context integration module to absorb surrounding context information and extract specific features that are beneficial to local patches. Note that, SGNet can be seamlessly integrated to any general segmentation model. Extensive experiments on five datasets demonstrate that SGNet achieves competitive performance and consistent improvements across a variety of general segmentation models, surpassing the traditional ultra image segmentation methods by a large margin.
DeepMed: Semiparametric Causal Mediation Analysis with Debiased Deep Learning
Causal mediation analysis can unpack the black box of causality and is therefore a powerful tool for disentangling causal pathways in biomedical and social sciences, and also for evaluating machine learning fairness. To reduce bias for estimating Natural Direct and Indirect Effects in mediation analysis, we propose a new method called DeepMed that uses deep neural networks (DNNs) to cross-fit the infinitedimensional nuisance functions in the efficient influence functions. We obtain novel theoretical results that our DeepMed method (1) can achieve semiparametric efficiency bound without imposing sparsity constraints on the DNN architecture and (2) can adapt to certain low-dimensional structures of the nuisance functions, significantly advancing the existing literature on DNN-based semiparametric causal inference. Extensive synthetic experiments are conducted to support our findings and also expose the gap between theory and practice. As a proof of concept, we apply DeepMed to analyze two real datasets on machine learning fairness and reach conclusions consistent with previous findings.
4D Gaussian Splatting in the Wild with Uncertainty-Aware Regularization
Novel view synthesis of dynamic scenes is becoming important in various applications, including augmented and virtual reality. We propose a novel 4D Gaussian Splatting (4DGS) algorithm for dynamic scenes from casually recorded monocular videos. To overcome the overfitting problem of existing work for these real-world videos, we introduce an uncertainty-aware regularization that identifies uncertain regions with few observations and selectively imposes additional priors based on diffusion models and depth smoothness on such regions. This approach improves both the performance of novel view synthesis and the quality of training image reconstruction. We also identify the initialization problem of 4DGS in fast-moving dynamic regions, where the Structure from Motion (SfM) algorithm fails to provide reliable 3D landmarks. To initialize Gaussian primitives in such regions, we present a dynamic region densification method using the estimated depth maps and scene flow. Our experiments show that the proposed method improves the performance of 4DGS reconstruction from a video captured by a handheld monocular camera and also exhibits promising results in few-shot static scene reconstruction.
Automated Multi-Task Learning for Joint Disease Prediction on Electronic Health Records
Electronic Health Records (EHR) have become a rich source of information with the potential to improve patient care and medical research. In recent years, machine learning models have proliferated for analyzing EHR data to predict patients' future health conditions. Among them, some studies advocate for multi-task learning (MTL) to jointly predict multiple target diseases for improving the prediction performance over single task learning. Nevertheless, current MTL frameworks for EHR data have significant limitations due to their heavy reliance on human experts to identify task groups for joint training and design model architectures. To reduce human intervention and improve the framework design, we propose an automated approach named AutoDP, which can search for the optimal configuration of task grouping and architectures simultaneously. To tackle the vast joint search space encompassing task combinations and architectures, we employ surrogate model-based optimization, enabling us to efficiently discover the optimal solution. Experimental results on real-world EHR data demonstrate the efficacy of the proposed AutoDP framework. It achieves significant performance improvements over both hand-crafted and automated state-of-the-art methods, also maintains a feasible search cost at the same time. Source code can be found via the link: https://github.com/SH-Src/AutoDP.
CLAP4CLIP: Continual Learning with Probabilistic Finetuning for Vision-Language Models, Dong Gong 1
Continual learning (CL) aims to help deep neural networks learn new knowledge while retaining what has been learned. Owing to their powerful generalizability, pretrained vision-language models such as Contrastive Language-Image Pre-training (CLIP) [1] have lately gained traction as practical CL candidates. However, the domain mismatch between the pre-training and the downstream CL tasks often calls for finetuning of the CLIP on the latter.