Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Online Adaptation of Language Models with a Memory of Amortized Contexts Jihoon Tack, Eric Mitchell
Due to the rapid generation and dissemination of information, large language models (LLMs) quickly run out of date despite enormous development costs. To address the crucial need to keep models updated, online learning has emerged as a critical tool when utilizing LLMs for real-world applications. However, given the ever-expanding corpus of unseen documents and the large parameter space of modern LLMs, efficient adaptation is essential. To address these challenges, we propose Memory of Amortized Contexts (MAC), an efficient and effective online adaptation framework for LLMs with strong knowledge retention. We propose a feature extraction and memory-augmentation approach to compress and extract information from new documents into compact modulations stored in a memory bank.
Why Diffusion Models Memorize and How to Mitigate Copying
Images generated by diffusion models like Stable Diffusion are increasingly widespread. Recent works and even lawsuits have shown that these models are prone to replicating their training data, unbeknownst to the user. In this paper, we first analyze this memorization problem in text-to-image diffusion models. While it is widely believed that duplicated images in the training set are responsible for content replication at inference time, we observe that the text conditioning of the model plays a similarly important role. In fact, we see in our experiments that data replication often does not happen for unconditional models, while it is common in the text-conditional case. Motivated by our findings, we then propose several techniques for reducing data replication at both training and inference time by randomizing and augmenting image captions in the training set. Code is available at https://github.com/somepago/DCR.
An Efficient Memory Module for Graph Few-Shot Class-Incremental Learning Dong Li2,3
Incremental graph learning has gained significant attention for its ability to address the catastrophic forgetting problem in graph representation learning. However, traditional methods often rely on a large number of labels for node classification, which is impractical in real-world applications. This makes few-shot incremental learning on graphs a pressing need. Current methods typically require extensive training samples from meta-learning to build memory and perform intensive finetuning of GNN parameters, leading to high memory consumption and potential loss of previously learned knowledge. To tackle these challenges, we introduce Mecoin, an efficient method for building and maintaining memory.
A Huber Loss Minimization Approach to Mean Estimation under User-level Differential Privacy Puning Zhao Lifeng Lai Li Shen Zhejiang Lab University of California, Davis Sun Yat-Sen University
Privacy protection of users' entire contribution of samples is important in distributed systems. The most effective approach is the two-stage scheme, which finds a small interval first and then gets a refined estimate by clipping samples into the interval. However, the clipping operation induces bias, which is serious if the sample distribution is heavy-tailed. Besides, users with large local sample sizes can make the sensitivity much larger, thus the method is not suitable for imbalanced users. Motivated by these challenges, we propose a Huber loss minimization approach to mean estimation under user-level differential privacy.
Block Sparse Bayesian Learning: A Diversified Scheme
This paper introduces a novel prior called Diversified Block Sparse Prior to characterize the widespread block sparsity phenomenon in real-world data. By allowing diversification on intra-block variance and inter-block correlation matrices, we effectively address the sensitivity issue of existing block sparse learning methods to pre-defined block information, which enables adaptive block estimation while mitigating the risk of overfitting. Based on this, a diversified block sparse Bayesian learning method (DivSBL) is proposed, utilizing EM algorithm and dual ascent method for hyperparameter estimation. Moreover, we establish the global and local optimality theory of our model.