Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
A Details on Tasks and Experiments
For the first time, our research introduces continual learning for abstract logical concepts, which mimics the process of humans acquiring higher-order learning abilities. This moves away from the traditional CL approach centered around images and considers a new direction that CL should ultimately strive for. Algorithmic reasoning tasks are fundamentally different from image data in their abstract and logical nature. The discontinuity of input data, the necessity for generalization regarding out-of-distribution samples, and the inability to use data augmentation or mix-up techniques present the need for new CL algorithms that differ from existing methodologies. We hope that future research will further explore methodologies that effectively leverage these unique characteristics of AR.
CLeAR: Continual Learning on Algorithmic Reasoning for Human-like Intelligence HyunGi Kim 2 Dahuin Jung
Continual learning (CL) aims to incrementally learn multiple tasks that are presented sequentially. The significance of CL lies not only in the practical importance but also in studying the learning mechanisms of humans who are excellent continual learners. While most research on CL has been done on structured data such as images, there is a lack of research on CL for abstract logical concepts such as counting, sorting, and arithmetic, which humans learn gradually over time in the real world. In this work, for the first time, we introduce novel algorithmic reasoning (AR) methodology for continual tasks of abstract concepts: CLeAR. Our methodology proposes a one-to-many mapping of input distribution to a shared mapping space, which allows the alignment of various tasks of different dimensions and shared semantics. Our tasks of abstract logical concepts, in the form of formal language, can be classified into Chomsky hierarchies based on their difficulty. In this study, we conducted extensive experiments consisting of 15 tasks with various levels of Chomsky hierarchy, ranging from in-hierarchy to inter-hierarchy scenarios. CLeAR not only achieved near zero forgetting but also improved accuracy during following tasks, a phenomenon known as backward transfer, while previous CL methods designed for image classification drastically failed.
Towards Understanding Evolving Patterns in Sequential Data
In many machine learning tasks, data is inherently sequential. Most existing algorithms learn from sequential data in an auto-regressive manner, which predicts the next unseen data point based on the observed sequence, implicitly assuming the presence of an evolving pattern embedded in the data that can be leveraged. However, identifying and assessing evolving patterns in learning tasks heavily relies on human expertise, and lacks a standardized quantitative measure. In this paper, we show that such a measure enables us to determine the suitability of employing sequential models, measure the temporal order of time series data, and conduct feature/data selections, which can be beneficial to a variety of learning tasks: time-series forecastings, classification tasks with temporal distribution shift, video predictions, etc.
Surge Phenomenon in Optimal Learning Rate and Batch Size Scaling
In current deep learning tasks, Adam-style optimizers--such as Adam, Adagrad, RMSprop, Adafactor, and Lion--have been widely used as alternatives to SGDstyle optimizers. These optimizers typically update model parameters using the sign of gradients, resulting in more stable convergence curves. The learning rate and the batch size are the most critical hyperparameters for optimizers, which require careful tuning to enable effective convergence. Previous research has shown that the optimal learning rate increases linearly (or follows similar rules) with batch size for SGD-style optimizers. However, this conclusion is not applicable to Adam-style optimizers.
Nonparametric Evaluation of Noisy ICA Solutions Peter Bickel 3 Derek Bean
Independent Component Analysis (ICA) was introduced in the 1980's as a model for Blind Source Separation (BSS), which refers to the process of recovering the sources underlying a mixture of signals, with little knowledge about the source signals or the mixing process. While there are many sophisticated algorithms for estimation, different methods have different shortcomings. In this paper, we develop a nonparametric score to adaptively pick the right algorithm for ICA with arbitrary Gaussian noise. The novelty of this score stems from the fact that it just assumes a finite second moment of the data and uses the characteristic function to evaluate the quality of the estimated mixing matrix without any knowledge of the parameters of the noise distribution. In addition, we propose some new contrast functions and algorithms that enjoy the same fast computability as existing algorithms like FASTICA and JADE but work in domains where the former may fail. While these also may have weaknesses, our proposed diagnostic, as shown by our simulations, can remedy them. Finally, we propose a theoretical framework to analyze the local and global convergence properties of our algorithms.
Model Sensitivity Aware Continual Learning
Continual learning (CL) aims to adapt to non-stationary data distributions while retaining previously acquired knowledge. However, CL models typically face a trade-off between preserving old task knowledge and excelling in new task performance. Existing approaches often sacrifice one for the other. To overcome this limitation, orthogonal to existing approaches, we propose a novel perspective that views the CL model ability in preserving old knowledge and performing well in new task as a matter of model sensitivity to parameter updates. Excessive parameter sensitivity can lead to two drawbacks: (1) significant forgetting of previous knowledge; and (2) overfitting to new tasks. To reduce parameter sensitivity, we optimize the model's performance based on the parameter distribution, which achieves the worst-case CL performance within a distribution neighborhood. This innovative learning paradigm offers dual benefits: (1) reduced forgetting of old knowledge by mitigating drastic changes in model predictions under small parameter updates; and (2) enhanced new task performance by preventing overfitting to new tasks. Consequently, our method achieves superior ability in retaining old knowledge and achieving excellent new task performance simultaneously. Importantly, our approach is compatible with existing CL methodologies, allowing seamless integration while delivering significant improvements in effectiveness, efficiency, and versatility with both theoretical and empirical supports.