Well File:



Cloud Object Detector Adaptation by Integrating Different Source Knowledge 1

Neural Information Processing Systems

We propose to explore an interesting and promising problem, Cloud Object Detector Adaptation (CODA), where the target domain leverages detections provided by a large cloud model to build a target detector. Despite with powerful generalization capability, the cloud model still cannot achieve error-free detection in a specific target domain. In this work, we present a novel Cloud Object detector adaptation method by Integrating different source kNowledge (COIN). The key idea is to incorporate a public vision-language model (CLIP) to distill positive knowledge while refining negative knowledge for adaptation by self-promotion gradient direction alignment. To that end, knowledge dissemination, separation, and distillation are carried out successively. Knowledge dissemination combines knowledge from cloud detector and CLIP model to initialize a target detector and a CLIP detector in target domain. By matching CLIP detector with the cloud detector, knowledge separation categorizes detections into three parts: consistent, inconsistent and private detections such that divide-and-conquer strategy can be used for knowledge distillation. Consistent and private detections are directly used to train target detector; while inconsistent detections are fused based on a consistent knowledge generation network, which is trained by aligning the gradient direction of inconsistent detections to that of consistent detections, because it provides a direction toward an optimal target detector. Experiment results demonstrate that the proposed COIN method achieves the state-of-the-art performance.


Online Learning in MDPs with Linear Function Approximation and Bandit Feedback

Neural Information Processing Systems

We consider the problem of online learning in an episodic Markov decision process, where the reward function is allowed to change between episodes in an adversarial manner and the learner only observes the rewards associated with its actions. We assume that rewards and the transition function can be represented as linear functions in terms of a known low-dimensional feature map, which allows us to consider the setting where the state space is arbitrarily large. We also assume that the learner has a perfect knowledge of the MDP dynamics. Our main contribution is developing an algorithm whose expected regret after T episodes is bounded by ร•( dHT), where H is the number of steps in each episode and d is the dimensionality of the feature map.



Generative View Synthesis: From Single-view Semantics to Novel-view Images

Neural Information Processing Systems

Content creation, central to applications such as virtual reality, can be tedious and time-consuming. Recent image synthesis methods simplify this task by offering tools to generate new views from as little as a single input image, or by converting a semantic map into a photorealistic image. We propose to push the envelope further, and introduce Generative View Synthesis (GVS) that can synthesize multiple photorealistic views of a scene given a single semantic map. We show that the sequential application of existing techniques, e.g., semantics-to-image translation followed by monocular view synthesis, fail at capturing the scene's structure. In contrast, we solve the semantics-to-image translation in concert with the estimation of the 3D layout of the scene, thus producing geometrically consistent novel views that preserve semantic structures.


Faster Matchings via Learned Duals

Neural Information Processing Systems

A recent line of research investigates how algorithms can be augmented with machine-learned predictions to overcome worst case lower bounds. This area has revealed interesting algorithmic insights into problems, with particular success in the design of competitive online algorithms. However, the question of improving algorithm running times with predictions has largely been unexplored. We take a first step in this direction by combining the idea of machine-learned predictions with the idea of "warm-starting" primal-dual algorithms. We consider one of the most important primitives in combinatorial optimization: weighted bipartite matching and its generalization to b-matching. We identify three key challenges when using learned dual variables in a primal-dual algorithm. First, predicted duals may be infeasible, so we give an algorithm that efficiently maps predicted infeasible duals to nearby feasible solutions. Second, once the duals are feasible, they may not be optimal, so we show that they can be used to quickly find an optimal solution. Finally, such predictions are useful only if they can be learned, so we show that the problem of learning duals for matching has low sample complexity.


Faster Matchings via Learned Duals

Neural Information Processing Systems

A recent line of research investigates how algorithms can be augmented with machine-learned predictions to overcome worst case lower bounds. This area has revealed interesting algorithmic insights into problems, with particular success in the design of competitive online algorithms. However, the question of improving algorithm running times with predictions has largely been unexplored. We take a first step in this direction by combining the idea of machine-learned predictions with the idea of "warm-starting" primal-dual algorithms. We consider one of the most important primitives in combinatorial optimization: weighted bipartite matching and its generalization to b-matching. We identify three key challenges when using learned dual variables in a primal-dual algorithm. First, predicted duals may be infeasible, so we give an algorithm that efficiently maps predicted infeasible duals to nearby feasible solutions. Second, once the duals are feasible, they may not be optimal, so we show that they can be used to quickly find an optimal solution. Finally, such predictions are useful only if they can be learned, so we show that the problem of learning duals for matching has low sample complexity.


Cross-video Identity Correlating for Person Re-identification Pre-training

Neural Information Processing Systems

Recent researches have proven that pre-training on large-scale person images extracted from internet videos is an effective way in learning better representations for person re-identification. However, these researches are mostly confined to pre-training at the instance-level or single-video tracklet-level. They ignore the identity-invariance in images of the same person across different videos, which is a key focus in person re-identification. To address this issue, we propose a Cross-video Identity-cOrrelating pre-traiNing (CION) framework. Defining a noise concept that comprehensively considers both intra-identity consistency and inter-identity discrimination, CION seeks the identity correlation from cross-video images by modeling it as a progressive multi-level denoising problem.