Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
An Improved Empirical Fisher Approximation for Natural Gradient Descent Xiaodong Wu1 Philip Woodland
Approximate Natural Gradient Descent (NGD) methods are an important family of optimisers for deep learning models, which use approximate Fisher information matrices to pre-condition gradients during training. The empirical Fisher (EF) method approximates the Fisher information matrix empirically by reusing the per-sample gradients collected during back-propagation. Despite its ease of implementation, the EF approximation has its theoretical and practical limitations. This paper investigates the inversely-scaled projection issue of EF, which is shown to be a major cause of its poor empirical approximation quality. An improved empirical Fisher (iEF) method is proposed to address this issue, which is motivated as a generalised NGD method from a loss reduction perspective, meanwhile retaining the practical convenience of EF.
Constraining Gaussian Processes to Systems of Linear Ordinary Differential Equations
Data in many applications follows systems of Ordinary Differential Equations (ODEs). This paper presents a novel algorithmic and symbolic construction for covariance functions of Gaussian Processes (GPs) with realizations strictly following a system of linear homogeneous ODEs with constant coefficients, which we call LODE-GPs. Introducing this strong inductive bias into a GP improves modelling of such data. Using smith normal form algorithms, a symbolic technique, we overcome two current restrictions in the state of the art: (1) the need for certain uniqueness conditions in the set of solutions, typically assumed in classical ODE solvers and their probabilistic counterparts, and (2) the restriction to controllable systems, typically assumed when encoding differential equations in covariance functions. We show the effectiveness of LODE-GPs in a number of experiments, for example learning physically interpretable parameters by maximizing the likelihood.
DiffKendall: A Novel Approach for Few-Shot Learning with Differentiable Kendall's Rank Correlation Weiran Huang
Few-shot learning aims to adapt models trained on the base dataset to novel tasks where the categories were not seen by the model before. This often leads to a relatively uniform distribution of feature values across channels on novel classes, posing challenges in determining channel importance for novel tasks. Standard few-shot learning methods employ geometric similarity metrics such as cosine similarity and negative Euclidean distance to gauge the semantic relatedness between two features. However, features with high geometric similarities may carry distinct semantics, especially in the context of few-shot learning. In this paper, we demonstrate that the importance ranking of feature channels is a more reliable indicator for few-shot learning than geometric similarity metrics. We observe that replacing the geometric similarity metric with Kendall's rank correlation only during inference is able to improve the performance of few-shot learning across a wide range of methods and datasets with different domains. Furthermore, we propose a carefully designed differentiable loss for meta-training to address the non-differentiability issue of Kendall's rank correlation. By replacing geometric similarity with differentiable Kendall's rank correlation, our method can integrate with numerous existing few-shot approaches and is ready for integrating with future state-of-the-art methods that rely on geometric similarity metrics.
How to protect your site from DDoS attacks - before it's too late
On March 10, X experienced multiple outages, with tens of thousands of users reporting the social site was down for them. Later that day, after multiple failures, X came back online. While the pro-Palestinian hacking collective known as Dark Storm Team claimed responsibility on Telegram for a distributed denial of service (DDoS) attack against X, we can't be sure they're responsible. Also: Microsoft's new AI agents aim to help security pros combat the latest threats CloudFlare, an internet security company specializing in blocking DDoS attacks, notes that "Spoofing source IP addresses is not technically challenging. Every machine connected to the internet can transmit any bytes of their choosing -- including setting arbitrary values in the source IP address field."
EDT: An Efficient Diffusion Transformer Framework Inspired by Human-like Sketching
Transformer-based Diffusion Probabilistic Models (DPMs) have shown more potential than CNN-based DPMs, yet their extensive computational requirements hinder widespread practical applications. To reduce the computation budget of transformer-based DPMs, this work proposes the Efficient Diffusion Transformer (EDT) framework. The framework includes a lightweight-design diffusion model architecture, and a training-free Attention Modulation Matrix and its alternation arrangement in EDT inspired by human-like sketching. Additionally, we propose a token relation-enhanced masking training strategy tailored explicitly for EDT to augment its token relation learning capability. Our extensive experiments demonstrate the efficacy of EDT. The EDT framework reduces training and inference costs and surpasses existing transformer-based diffusion models in image synthesis performance, thereby achieving a significant overall enhancement. With lower FID, EDT-S, EDT-B, and EDT-XL attained speed-ups of 3.93x, 2.84x, and 1.92x respectively in the training phase, and 2.29x, 2.29x, and 2.22x respectively in inference, compared to the corresponding sizes of MDTv2. Our code is available at here.
Adaptive Randomized Smoothing: Certified Adversarial Robustness for Multi-Step Defences
We propose Adaptive Randomized Smoothing (ARS) to certify the predictions of our test-time adaptive models against adversarial examples. ARS extends the analysis of randomized smoothing using f-Differential Privacy to certify the adaptive composition of multiple steps. For the first time, our theory covers the sound adaptive composition of general and high-dimensional functions of noisy inputs.
H&M to use digital clones of models in ads and social media
Fashion retailer H&M is to use artificial intelligence (AI) to create digital "twins" of 30 models. It says it will use the AI doppelgangers in some social media posts and marketing in the place of humans, if given permission by models. "We are curious to explore how to showcase our fashion in new creative ways – and embrace the benefits of new technology – while staying true to our commitment to personal style," said its chief creative officer Jörgen Andersson in a statement. Despite H&M's claim it would not change its "human-centric approach" some fear the move could impact other models, photographers and make-up artists.