Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
VidChapters-7M: Video Chapters at Scale
Segmenting long videos into chapters enables users to quickly navigate to the information of their interest. This important topic has been understudied due to the lack of publicly released datasets. To address this issue, we present VidChapters-7M, a dataset of 817K user-chaptered videos including 7M chapters in total. VidChapters-7M is automatically created from videos online in a scalable manner by scraping user-annotated chapters and hence without any additional manual annotation. We introduce the following three tasks based on this data. First, the video chapter generation task consists of temporally segmenting the video and generating a chapter title for each segment. To further dissect the problem, we also define two variants of this task: video chapter generation given ground-truth boundaries, which requires generating a chapter title given an annotated video segment, and video chapter grounding, which requires temporally localizing a chapter given its annotated title.
Meta-Controller: Few-Shot Imitation of Unseen Embodiments and Tasks in Continuous Control
Generalizing across robot embodiments and tasks is crucial for adaptive robotic systems. Modular policy learning approaches adapt to new embodiments but are limited to specific tasks, while few-shot imitation learning (IL) approaches often focus on a single embodiment. In this paper, we introduce a few-shot behavior cloning framework to simultaneously generalize to unseen embodiments and tasks using a few (e.g., five) reward-free demonstrations. Our framework leverages a joint-level input-output representation to unify the state and action spaces of heterogeneous embodiments and employs a novel structure-motion state encoder that is parameterized to capture both shared knowledge across all embodiments and embodiment-specific knowledge. A matching-based policy network then predicts actions from a few demonstrations, producing an adaptive policy that is robust to over-fitting. Evaluated in the DeepMind Control suite, our framework termed Meta-Controller demonstrates superior few-shot generalization to unseen embodiments and tasks over modular policy learning and few-shot IL approaches.
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems J. Thorben Frank 1,2 Oliver T. Unke 1,2,3 Klaus-Robert Mรผller
The application of machine learning methods in quantum chemistry has enabled the study of numerous chemical phenomena, which are computationally intractable with traditional ab-initio methods. However, some quantum mechanical properties of molecules and materials depend on non-local electronic effects, which are often neglected due to the difficulty of modeling them efficiently. This work proposes a modified attention mechanism adapted to the underlying physics, which allows to recover the relevant non-local effects. Namely, we introduce spherical harmonic coordinates (SPHCs) to reflect higher-order geometric information for each atom in a molecule, enabling a non-local formulation of attention in the SPHC space.
The Benefits of Balance: From Information Projections to Variance Reduction
Data balancing across multiple modalities and sources appears in various forms in foundation models in machine learning and AI, e.g. in CLIP and DINO. We show that data balancing across modalities and sources actually offers an unsuspected benefit: variance reduction. We present a non-asymptotic statistical bound that quantifies this variance reduction effect and relates it to the eigenvalue decay of Markov operators. Furthermore, we describe how various forms of data balancing in contrastive multimodal learning and self-supervised clustering can be better understood, and even improved upon, owing to our variance reduction viewpoint.
High-dimensional Contextual Bandit Problem without Sparsity
In this research, we investigate the high-dimensional linear contextual bandit problem where the number of features is greater than the budget, or it may even be infinite. Differing from the majority of previous works in this field, we do not impose sparsity on the regression coefficients. Instead, we rely on recent findings on overparameterized models, which enables us to analyze the performance of the minimum-norm interpolating estimator when data distributions have small effective ranks. We propose an explore-then-commit (EtC) algorithm to address this problem and examine its performance. Through our analysis, we derive the optimal rate of the ETC algorithm in terms of and show that this rate can be achieved by balancing exploration and exploitation. Moreover, we introduce an adaptive explore-then-commit (AEtC) algorithm that adaptively finds the optimal balance. We assess the performance of the proposed algorithms through a series of simulations.