Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Unsupervised Anomaly Detection in The Presence of Missing Values
Anomaly detection methods typically require fully observed data for model training and inference and cannot handle incomplete data, while the missing data problem is pervasive in science and engineering, leading to challenges in many important applications such as abnormal user detection in recommendation systems and novel or anomalous cell detection in bioinformatics, where the missing rates can be higher than 30% or even 80%. In this work, first, we construct and evaluate a straightforward strategy, "impute-then-detect", via combining state-of-the-art imputation methods with unsupervised anomaly detection methods, where the training data are composed of normal samples only. We observe that such twostage methods frequently yield imputation bias from normal data, namely, the imputation methods are inclined to make incomplete samples "normal", where the fundamental reason is that the imputation models learned only on normal data and cannot generalize well to abnormal data in the inference stage. To address this challenge, we propose an end-to-end method that integrates data imputation with anomaly detection into a unified optimization problem. The proposed model learns to generate well-designed pseudo-abnormal samples to mitigate the imputation bias and ensure the discrimination ability of both the imputation and detection processes. Furthermore, we provide theoretical guarantees for the effectiveness of the proposed method, proving that the proposed method can correctly detect anomalies with high probability. Experimental results on datasets with manually constructed missing values and inherent missing values demonstrate that our proposed method effectively mitigates the imputation bias and surpasses the baseline methods significantly.
Human Expertise in Algorithmic Prediction
We introduce a novel framework for incorporating human expertise into algorithmic predictions. Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to predictive algorithms. We argue that this framing clarifies the problem of human-AI collaboration in prediction tasks, as experts often form judgments by drawing on information which is not encoded in an algorithm's training data. Algorithmic indistinguishability yields a natural test for assessing whether experts incorporate this kind of "side information", and further provides a simple but principled method for selectively incorporating human feedback into algorithmic predictions. We show that this method provably improves the performance of any feasible algorithmic predictor and precisely quantify this improvement. We find empirically that although algorithms often outperform their human counterparts on average, human judgment can improve algorithmic predictions on specific instances (which can be identified ex-ante). In an X-ray classification task, we find that this subset constitutes nearly 30% of the patient population. Our approach provides a natural way of uncovering this heterogeneity and thus enabling effective human-AI collaboration.
Going Beyond Heuristics by Imposing Policy Improvement as a Constraint Chi-Chang Lee 1
In many reinforcement learning (RL) applications, incorporating heuristic rewards alongside the task reward is crucial for achieving desirable performance. Heuristics encode prior human knowledge about how a task should be done, providing valuable hints for RL algorithms. However, such hints may not be optimal, limiting the performance of learned policies. The currently established way of using heuristics is to modify the heuristic reward in a manner that ensures that the optimal policy learned with it remains the same as the optimal policy for the task reward (i.e., optimal policy invariance). However, these methods often fail in practical scenarios with limited training data.
Divergences between Language Models and Human Brains
Do machines and humans process language in similar ways? Recent research has hinted at the affirmative, showing that human neural activity can be effectively predicted using the internal representations of language models (LMs). Although such results are thought to reflect shared computational principles between LMs and human brains, there are also clear differences in how LMs and humans represent and use language. In this work, we systematically explore the divergences between human and machine language processing by examining the differences between LM representations and human brain responses to language as measured by Magnetoencephalography (MEG) across two datasets in which subjects read and listened to narrative stories. Using an LLM-based data-driven approach, we identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense. We validate these findings with human behavioral experiments and hypothesize that the gap is due to insufficient representations of social/emotional and physical knowledge in LMs. Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.