Well File:

Perplexity-aware Correction for Robust Alignment with Noisy Preferences

Neural Information Processing Systems

Alignment techniques are critical in ensuring that large language models (LLMs) output helpful and harmless content by enforcing the LLM-generated content to align with human preferences. However, the existence of noisy preferences (NPs), where the responses are mistakenly labelled as chosen or rejected, could spoil the alignment, thus making the LLMs generate useless and even malicious content. Existing methods mitigate the issue of NPs from the loss perspective by adjusting the alignment loss based on a clean validation dataset. Orthogonal to these lossoriented methods, we propose perplexity-aware correction (PerpCorrect) from the data perspective for robust alignment which detects and corrects NPs based on the differences between the perplexity of the chosen and rejected responses (dubbed as PPLDiff). Intuitively, a higher PPLDiff indicates a higher probability of the NP because a rejected/chosen response which is mistakenly labelled as chosen/rejected is less preferable to be generated by an aligned LLM, thus having a higher/lower perplexity. PerpCorrect works in three steps: (1) PerpCorrect aligns a surrogate LLM using the clean validation data to make the PPLDiff able to distinguish clean preferences (CPs) and NPs.






OmniTokenizer: A Joint Image-Video Tokenizer for Visual Generation

Neural Information Processing Systems

Tokenizer, serving as a translator to map the intricate visual data into a compact latent space, lies at the core of visual generative models. Based on the finding that existing tokenizers are tailored to image or video inputs, this paper presents OmniTokenizer, a transformer-based tokenizer for joint image and video tokenization. OmniTokenizer is designed with a spatial-temporal decoupled architecture, which integrates window and causal attention for spatial and temporal modeling. To exploit the complementary nature of image and video data, we further propose a progressive training strategy, where OmniTokenizer is first trained on image data on a fixed resolution to develop the spatial encoding capacity and then jointly trained on image and video data on multiple resolutions to learn the temporal dynamics. OmniTokenizer, for the first time, handles both image and video inputs within a unified framework and proves the possibility of realizing their synergy. Extensive experiments demonstrate that OmniTokenizer achieves state-of-the-art (SOTA) reconstruction performance on various image and video datasets, e.g., 1.11 reconstruction FID on ImageNet and 42 reconstruction FVD on UCF-101, beating the previous SOTA methods by 13% and 26%, respectively. Additionally, we also show that when integrated with OmniTokenizer, both language model-based approaches and diffusion models can realize advanced visual synthesis performance, underscoring the superiority and versatility of our method.



DeepGEM: Generalized Expectation-Maximization for Blind Inversion 1 Jorge C. Castellanos

Neural Information Processing Systems

Typically, inversion algorithms assume that a forward model, which relates a source to its resulting measurements, is known and fixed. Using collected indirect measurements and the forward model, the goal becomes to recover the source. When the forward model is unknown, or imperfect, artifacts due to model mismatch occur in the recovery of the source. In this paper, we study the problem of blind inversion: solving an inverse problem with unknown or imperfect knowledge of the forward model parameters. We propose DeepGEM, a variational Expectation-Maximization (EM) framework that can be used to solve for the unknown parameters of the forward model in an unsupervised manner. DeepGEM makes use of a normalizing flow generative network to efficiently capture complex posterior distributions, which leads to more accurate evaluation of the source's posterior distribution used in EM. We showcase the effectiveness of our DeepGEM approach by achieving strong performance on the challenging problem of blind seismic tomography, where we significantly outperform the standard method used in seismology. We also demonstrate the generality of DeepGEM by applying it to a simple case of blind deconvolution.


Dirichlet_Graph_Variational_Autoencoder_V3.pdf

Neural Information Processing Systems

Hence, the regularization is used to maximize the sample variance. To simplify the notation (i.e., ignore the constant), As the slater condition holds, KKT condition is necessary and sufficient.