Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Response for Submission 3163 " DM2C: Deep Mixed-Modal Clustering "
We thank all the reviewers for their careful and valuable comments. Ablation study We evaluate k-means using latent modality-specific representations obtained before/after the The results are recorded in Tab. Cycle consistency on multiple modalities: Perhaps due to our way of writing, it is a pity to leave you an Q2. "1-Lipschitz constraint" is not explained: "1-Lipschitz constraint" is a requirement of the dual formulation This approximates the cycle-consistency condition.
Unraveling the Gradient Descent Dynamics of Transformers
While the Transformer architecture has achieved remarkable success across various domains, a thorough theoretical foundation explaining its optimization dynamics is yet to be fully developed. In this study, we aim to bridge this understanding gap by answering the following two core questions: (1) Which types of Transformer architectures allow Gradient Descent (GD) to achieve guaranteed convergence?
Intrinsic Self-Supervision for Data Quality Audits Fabian Gröger, Alvaro Gonzalez-Jimenez
Benchmark datasets in computer vision often contain off-topic images, near duplicates, and label errors, leading to inaccurate estimates of model performance. In this paper, we revisit the task of data cleaning and formalize it as either a ranking problem, which significantly reduces human inspection effort, or a scoring problem, which allows for automated decisions based on score distributions. We find that a specific combination of context-aware self-supervised representation learning and distance-based indicators is effective in finding issues without annotation biases.
6a10bbd480e4c5573d8f3af73ae0454b-AuthorFeedback.pdf
Thanks for the VERY careful, responsible and competent reviews our paper has received! Here we comment only on the more significant questions raised. Reviewer 1 " relate to: "Non-Redundant Spectral Dimensionality Reduction", Michaeli et al." Will do. " The choice of kernel bandwidth (ε) not addressed." "if ε is chosen as a diag matrix..., the aspect ratio problem could be fixed (see for example "Kernel Scaling for We will discuss this reference in final paper.
Extreme Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products
Tharun Kumar Reddy Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, Anshumali Shrivastava
In the last decade, it has been shown that many hard AI tasks, especially in NLP, can be naturally modeled as extreme classification problems leading to improved precision. However, such models are prohibitively expensive to train due to the memory blow-up in the last layer. For example, a reasonable softmax layer for the dataset of interest in this paper can easily reach well beyond 100 billion parameters (> 400 GB memory). To alleviate this problem, we present Merged-Average Classifiers via Hashing (MACH), a generic K-classification algorithm where memory provably scales at O(log K) without any strong assumption on the classes. MACH is subtly a count-min sketch structure in disguise, which uses universal hashing to reduce classification with a large number of classes to few embarrassingly parallel and independent classification tasks with a small (constant) number of classes.
2 Related Work
In time-series analysis, many recent works seek to provide a unified view and representation for time-series across multiple domains, leading to the development of foundation models for time-series data. Despite diverse modeling techniques, existing models are black boxes and fail to provide insights and explanations about their representations.
QuanTA: Efficient High-Rank Fine-Tuning of LLMs with Quantum-Informed Tensor Adaptation Zhuo Chen 12 Rumen Dangovski 13 Charlotte Loh 13 Owen Dugan 12
We propose Quantum-informed Tensor Adaptation (QuanTA), a novel, easy-toimplement, fine-tuning method with no inference overhead for large-scale pretrained language models. By leveraging quantum-inspired methods derived from quantum circuit structures, QuanTA enables efficient high-rank fine-tuning, surpassing the limitations of Low-Rank Adaptation (LoRA)--low-rank approximation may fail for complicated downstream tasks. Our approach is theoretically supported by the universality theorem and the rank representation theorem to achieve efficient high-rank adaptations. Experiments demonstrate that QuanTA significantly enhances commonsense reasoning, arithmetic reasoning, and scalability compared to traditional methods. Furthermore, QuanTA shows superior performance with fewer trainable parameters compared to other approaches and can be designed to integrate with existing fine-tuning algorithms for further improvement, providing a scalable and efficient solution for fine-tuning large language models and advancing state-of-the-art in natural language processing.
Grid Saliency for Context Explanations of Semantic Segmentation
Lukas Hoyer, Mauricio Munoz, Prateek Katiyar, Anna Khoreva, Volker Fischer
Recently, there has been a growing interest in developing saliency methods that provide visual explanations of network predictions. Still, the usability of existing methods is limited to image classification models. To overcome this limitation, we extend the existing approaches to generate grid saliencies, which provide spatially coherent visual explanations for (pixel-level) dense prediction networks. As the proposed grid saliency allows to spatially disentangle the object and its context, we specifically explore its potential to produce context explanations for semantic segmentation networks, discovering which context most influences the class predictions inside a target object area. We investigate the effectiveness of grid saliency on a synthetic dataset with an artificially induced bias between objects and their context as well as on the real-world Cityscapes dataset using state-of-the-art segmentation networks. Our results show that grid saliency can be successfully used to provide easily interpretable context explanations and, moreover, can be employed for detecting and localizing contextual biases present in the data.
OccFusion: Rendering Occluded Humans with Generative Diffusion Priors Adam Sun
Most existing human rendering methods require every part of the human to be fully visible throughout the input video. However, this assumption does not hold in real-life settings where obstructions are common, resulting in only partial visibility of the human. Considering this, we present OccFusion, an approach that utilizes efficient 3D Gaussian splatting supervised by pretrained 2D diffusion models for efficient and high-fidelity human rendering. We propose a pipeline consisting of three stages. In the Initialization stage, complete human masks are generated from partial visibility masks. In the Optimization stage, human 3D Gaussians are optimized with additional supervision by Score-Distillation Sampling (SDS) to create a complete geometry of the human. Finally, in the Refinement stage, in-context inpainting is designed to further improve rendering quality on the less observed human body parts. We evaluate OccFusion on ZJU-MoCap and challenging OcMotion sequences and find that it achieves state-ofthe-art performance in the rendering of occluded humans.