Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Semi-supervised Multi-label Learning with Balanced Binary Angular Margin Loss Changchun Li
Semi-supervised multi-label learning (SSMLL) refers to inducing classifiers using a small number of samples with multiple labels and many unlabeled samples. The prevalent solution of SSMLL involves forming pseudo-labels for unlabeled samples and inducing classifiers using both labeled and pseudo-labeled samples in a self-training manner. Unfortunately, with the commonly used binary type of loss and negative sampling, we have empirically found that learning with labeled and pseudo-labeled samples can result in the variance bias problem between the feature distributions of positive and negative samples for each label. To alleviate this problem, we aim to balance the variance bias between positive and negative samples from the perspective of the feature angle distribution for each label. Specifically, we extend the traditional binary angular margin loss to a balanced extension with feature angle distribution transformations under the Gaussian assumption, where the distributions are iteratively updated during classifier training. We also suggest an efficient prototype-based negative sampling method to maintain high-quality negative samples for each label.
Real-world Image Dehazing with Coherence-based Pseudo Labeling and Cooperative Unfolding Network
Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks.
A Taxonomy of Challenges to Curating Fair Datasets Dora Zhao Morgan Klaus Scheuerman
Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade-offs encountered throughout the dataset curation lifecycle. Our findings underscore overarching issues within the broader fairness landscape that impact data curation. We conclude with recommendations aimed at fostering systemic changes to better facilitate fair dataset curation practices.
SelectIT: Selective Instruction Tuning for LLMs via Uncertainty-Aware Self-Reflection Derek F. Wong 2 Dongfang Li1
Instruction tuning (IT) is crucial to tailoring large language models (LLMs) towards human-centric interactions. Recent advancements have shown that the careful selection of a small, high-quality subset of IT data can significantly enhance the performance of LLMs. Despite this, common approaches often rely on additional models or data, which increases costs and limits widespread adoption. In this work, we propose a novel approach, termed SelectIT, that capitalizes on the foundational capabilities of the LLM itself. Specifically, we exploit the intrinsic uncertainty present in LLMs to more effectively select high-quality IT data, without the need for extra resources. Furthermore, we introduce a curated IT dataset, the Selective Alpaca, created by applying SelectIT to the Alpaca-GPT4 dataset. Empirical results demonstrate that IT using Selective Alpaca leads to substantial model ability enhancement. The robustness of SelectIT has also been corroborated in various foundation models and domain-specific tasks. Our findings suggest that longer and more computationally intensive IT data may serve as superior sources of IT, offering valuable insights for future research in this area.
From Complexity to Simplicity: Adaptive ES-Active Subspaces for Blackbox Optimization
Krzysztof M. Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Vikas Sindhwani
We present a new algorithm (ASEBO) for optimizing high-dimensional blackbox functions. ASEBO adapts to the geometry of the function and learns optimal sets of sensing directions, which are used to probe it, on-the-fly. It addresses the exploration-exploitation trade-off of blackbox optimization with expensive blackbox queries by continuously learning the bias of the lower-dimensional model used to approximate gradients of smoothings of the function via compressed sensing and contextual bandits methods. To obtain this model, it leverages techniques from the emerging theory of active subspaces [8] in a novel ES blackbox optimization context. As a result, ASEBO learns the dynamically changing intrinsic dimensionality of the gradient space and adapts to the hardness of different stages of the optimization without external supervision. Consequently, it leads to more sample-efficient blackbox optimization than state-of-the-art algorithms. We provide theoretical results and test ASEBO advantages over other methods empirically by evaluating it on the set of reinforcement learning policy optimization tasks as well as functions from the recently open-sourced Nevergrad library.
Attention Interpolation for Text-to-Image Diffusion Qiyuan He1 Jinghao Wang 2 Angela Yao
Conditional diffusion models can create unseen images in various settings, aiding image interpolation. Interpolation in latent spaces is well-studied, but interpolation with specific conditions like text or image is less understood. Common approaches interpolate linearly in the conditioning space but tend to result in inconsistent images with poor fidelity. This work introduces a novel trainingfree technique named Attention Interpolation via Diffusion (AID). AID has two key contributions: 1) a fused inner/outer interpolated attention layer to boost image consistency and fidelity; and 2) selection of interpolation coefficients via a beta distribution to increase smoothness. Additionally, we present an AID variant called Prompt-guided Attention Interpolation via Diffusion (PAID), which 3) treats interpolation as a condition-dependent generative process. Experiments demonstrate that our method achieves greater consistency, smoothness, and efficiency in condition-based interpolation, aligning closely with human preferences. Furthermore, PAID offers substantial benefits for compositional generation, controlled image editing, image morphing and image-controlled generation, all while remaining training-free.
Dueling Over Dessert, Mastering the Art of Repeated Cake Cutting
We consider the setting of repeated fair division between two players, denoted Alice and Bob, with private valuations over a cake. In each round, a new cake arrives, which is identical to the ones in previous rounds. Alice cuts the cake at a point of her choice, while Bob chooses the left piece or the right piece, leaving the remainder for Alice. We consider two versions: sequential, where Bob observes Alice's cut point before choosing left/right, and simultaneous, where he only observes her cut point after making his choice. The simultaneous version was first considered in Aumann and Maschler (1995).
SCube: Instant Large-Scale Scene Reconstruction using VoxSplats,Yifan Lu
We present SCube, a novel method for reconstructing large-scale 3D scenes (geometry, appearance, and semantics) from a sparse set of posed images. Our method encodes reconstructed scenes using a novel representation VoxSplat, which is a set of 3D Gaussians supported on a high-resolution sparse-voxel scaffold. To reconstruct a VoxSplat from images, we employ a hierarchical voxel latent diffusion model conditioned on the input images followed by a feedforward appearance prediction model. The diffusion model generates high-resolution grids progressively in a coarse-to-fine manner, and the appearance network predicts a set of Gaussians within each voxel.
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
Graph Transformers (GTs) have recently emerged as popular alternatives to traditional message-passing Graph Neural Networks (GNNs), due to their theoretically superior expressiveness and impressive performance reported on standard node classification benchmarks, often significantly outperforming GNNs. In this paper, we conduct a thorough empirical analysis to reevaluate the performance of three classic GNN models (GCN, GAT, and GraphSAGE) against GTs. Our findings suggest that the previously reported superiority of GTs may have been overstated due to suboptimal hyperparameter configurations in GNNs. Remarkably, with slight hyperparameter tuning, these classic GNN models achieve state-of-the-art performance, matching or even exceeding that of recent GTs across 17 out of the 18 diverse datasets examined. Additionally, we conduct detailed ablation studies to investigate the influence of various GNN configurations--such as normalization, dropout, residual connections, and network depth--on node classification performance. Our study aims to promote a higher standard of empirical rigor in the field of graph machine learning, encouraging more accurate comparisons and evaluations of model capabilities.