Well File:

TokenLearner: Adaptive Space-Time Tokenization for Videos

Neural Information Processing Systems

In this paper, we introduce a novel visual representation learning which relies on a handful of adaptively learned tokens, and which is applicable to both image and video understanding tasks. Instead of relying on hand-designed splitting strategies to obtain visual tokens and processing a large number of densely sampled patches for attention, our approach learns to mine important tokens in visual data. This results in efficiently and effectively finding a few important visual tokens and enables modeling of pairwise attention between such tokens, over a longer temporal horizon for videos, or the spatial content in image frames. Our experiments demonstrate strong performance on several challenging benchmarks for video recognition tasks. Importantly, due to our tokens being adaptive, we accomplish competitive results at significantly reduced computational cost. We establish new state-of-the-arts on multiple video datasets, including Kinetics-400, Kinetics-600, Charades, and AViD.


Towards Combating Frequency Simplicity-biased Learning for Domain Generalization

Neural Information Processing Systems

Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains. Recent studies show that neural networks frequently suffer from a simplicity-biased learning behavior which leads to over-reliance on specific frequency sets, namely as frequency shortcuts, instead of semantic information, resulting in poor generalization performance. Despite previous data augmentation techniques successfully enhancing generalization performances, they intend to apply more frequency shortcuts, thereby causing hallucinations of generalization improvement. In this paper, we aim to prevent such learning behavior of applying frequency shortcuts from a datadriven perspective. Given the theoretical justification of models' biased learning behavior on different spatial frequency components, which is based on the dataset frequency properties, we argue that the learning behavior on various frequency components could be manipulated by changing the dataset statistical structure in the Fourier domain. Intuitively, as frequency shortcuts are hidden in the dominant and highly dependent frequencies of dataset structure, dynamically perturbating the over-reliance frequency components could prevent the application of frequency shortcuts. To this end, we propose two effective data augmentation modules designed to collaboratively and adaptively adjust the frequency characteristic of the dataset, aiming to dynamically influence the learning behavior of the model and ultimately serving as a strategy to mitigate shortcut learning. Code is available at AdvFrequency.



Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models Hanqing Wang 3

Neural Information Processing Systems

Fine-tuning is a crucial process for adapting large language models (LLMs) to diverse applications. In certain scenarios, such as multi-tenant serving, deploying multiple LLMs becomes necessary to meet complex demands. Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs. In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for taskspecific fine-tuned LLMs (e.g., WizardMath for math problems). Motivated by the long-tail distribution of singular values in the delta weights, we propose a delta quantization approach using mixed-precision. This method employs higher-bit representation for singular vectors corresponding to larger singular values. We evaluate our approach on various fine-tuned LLMs, including math LLMs, code LLMs, chat LLMs, and even VLMs. Experimental results demonstrate that our approach performs comparably to full fine-tuned LLMs, surpassing both low-rank and low-bit baselines by a considerable margin. Additionally, we show that our method is compatible with various backbone LLMs, such as Llama-2, Llama-3, and Mistral, highlighting its generalizability.





Collaborative Causal Discovery with Atomic Interventions

Neural Information Processing Systems

We introduce a new Collaborative Causal Discovery problem, through which we model a common scenario in which we have multiple independent entities each with their own causal graph, and the goal is to simultaneously learn all these causal graphs. We study this problem without the causal sufficiency assumption, using Maximal Ancestral Graphs (MAG) to model the causal graphs, and assuming that we have the ability to actively perform independent single vertex (or atomic) interventions on the entities. If the M underlying (unknown) causal graphs of the entities satisfy a natural notion of clustering, we give algorithms that leverage this property, and recovers all the causal graphs using roughly logarithmic in M number of atomic interventions per entity. These are significantly fewer than n atomic interventions per entity required to learn each causal graph separately, where n is the number of observable nodes in the causal graph. We complement our results with a lower bound and discuss various extensions of our collaborative setting.


Inverse M-Kernels for Linear Universal Approximators of Non-Negative Functions

Neural Information Processing Systems

Kernel methods are widely utilized in machine learning field to learn, from training data, a latent function in a reproducing kernel Hilbert space. It is well known that the approximator thus obtained usually achieves a linear representation, which brings various computational benefits, while maintaining great representation power (i.e., universal approximation). However, when non-negativity constraints are imposed on the function's outputs, the literature usually takes the kernel method-based approximators as offering linear representations at the expense of limited model flexibility or good representation power by allowing for their nonlinear forms. The main contribution of this paper is to derive a sufficient condition for a positive definite kernel so that it may construct flexible and linear approximators of non-negative functions. We call a kernel function that offers these attributes an inverse M-kernel; it is a generalization of the inverse M-matrix. Furthermore, we show that for a one-dimensional input space, universal exponential/Abel kernels are inverse M-kernels and construct linear universal approximators of non-negative functions. To the best of our knowledge, it is the first time that the existence of linear universal approximators of non-negative functions has been elucidated. We confirm the effectiveness of our results by experiments on the problems of non-negativity-constrained regression, density estimation, and intensity estimation. Finally, we discuss issues and perspectives on multi-dimensional input settings.