Well File:

Bidirectional Learning for Offline Infinite-width Model-based Optimization

Neural Information Processing Systems

In offline model-based optimization, we strive to maximize a black-box objective function by only leveraging a static dataset of designs and their scores. This problem setting arises in numerous fields including the design of materials, robots, DNA sequences, and proteins. Recent approaches train a deep neural network (DNN) on the static dataset to act as a proxy function, and then perform gradient ascent on the existing designs to obtain potentially high-scoring designs. This methodology frequently suffers from the out-of-distribution problem where the proxy function often returns poor designs. To mitigate this problem, we propose BiDirectional learning for offline Infinite-width model-based optimization (BDI).



CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks Ting-Yun Chang 1 Leticia Pinto Alva 1

Neural Information Processing Systems

Current state-of-the-art vision-and-language models are evaluated on tasks either individually or in a multi-task setting, overlooking the challenges of continually learning (CL) tasks as they arrive. Existing CL benchmarks have facilitated research on task adaptation and mitigating "catastrophic forgetting", but are limited to vision-only and language-only tasks. We present CLiMB, a benchmark to study the challenge of learning multimodal tasks in a CL setting, and to systematically evaluate how upstream continual learning can rapidly generalize to new multimodal and unimodal tasks. CLiMB includes implementations of several CL algorithms and a modified Vision-Language Transformer (ViLT) model that can be deployed on both multimodal and unimodal tasks. We find that common CL methods can help mitigate forgetting during multimodal task learning, but do not enable crosstask knowledge transfer. We envision that CLiMB will facilitate research on a new class of CL algorithms for this challenging multimodal setting.


ChatGPT's new image generator creates stunning images - for some users

ZDNet

OpenAI has continually expanded its ChatGPT offerings, adding an AI voice assistant, file and image understanding, advanced research capabilites, AI agents, and more. However, there was one glaring omission -- a really capable image generator. On Tuesday, OpenAI launched 4o image generation. This image model is significantly better -- albeit slower -- than the DALL-E models previously offered by OpenAI. It tackles very difficult prompts such as realistic images and, most impressively, accurate text.


InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling

Neural Information Processing Systems

Despite the success of reinforcement learning from human feedback (RLHF) in aligning language models with human values, reward hacking, also termed reward overoptimization, remains a critical challenge. This issue primarily arises from reward misgeneralization, where reward models (RMs) compute reward using spurious features that are irrelevant to human preferences. In this work, we tackle this problem from an information-theoretic perspective and propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective to filter out irrelevant information. Notably, we further identify a correlation between overoptimization and outliers in the IB latent space of InfoRM, establishing it as a promising tool for detecting reward overoptimization. Inspired by this finding, we propose the Cluster Separation Index (CSI), which quantifies deviations in the IB latent space, as an indicator of reward overoptimization to facilitate the development of online mitigation strategies. Extensive experiments on a wide range of settings and RM scales (70M, 440M, 1.4B, and 7B) demonstrate the effectiveness of InfoRM. Further analyses reveal that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets, signifying a notable advancement in the field of RLHF.


Appendix A Object Query Generation

Neural Information Processing Systems

The text-guided object detection network, as described in Section 3.1.1, Here, we present the details of the process for generating object queries. Detecting objects in a 3D scene using a fixed set of 3D anchor boxes or parameterized representations poses a challenge due to the large search space. Since the network focuses only on detecting objects that are semantically related to the text, we filter the point cloud features based on their semantic correlation with textual features. As mentioned in Section 3.1.2,



Multiagent Q-learning with Sub-Team Coordination Wenhan Huang

Neural Information Processing Systems

In many real-world cooperative multiagent reinforcement learning (MARL) tasks, teams of agents can rehearse together before deployment, but then communication constraints may force individual agents to execute independently when deployed. Centralized training and decentralized execution (CTDE) is increasingly popular in recent years, focusing mainly on this setting. In the value-based MARL branch, credit assignment mechanism is typically used to factorize the team reward into each individual's reward -- individual-global-max (IGM) is a condition on the factorization ensuring that agents' action choices coincide with team's optimal joint action. However, current architectures fail to consider local coordination within sub-teams that should be exploited for more effective factorization, leading to faster learning. We propose a novel value factorization framework, called multiagent Q-learning with sub-team coordination (QSCAN), to flexibly represent sub-team coordination while honoring the IGM condition. QSCAN encompasses the full spectrum of sub-team coordination according to sub-team size, ranging from the monotonic value function class to the entire IGM function class, with familiar methods such as QMIX and QPLEX located at the respective extremes of the spectrum. Experimental results show that QSCAN's performance dominates stateof-the-art methods in matrix games, predator-prey tasks, the Switch challenge in MA-Gym. Additionally, QSCAN achieves comparable performances to those methods in a selection of StarCraft II micro-management tasks.


Bisimulation Metrics are Optimal Transport Distances, and Can be Computed Efficiently

Neural Information Processing Systems

We propose a new framework for formulating optimal transport distances between Markov chains. Previously known formulations studied couplings between the entire joint distribution induced by the chains, and derived solutions via a reduction to dynamic programming (DP) in an appropriately defined Markov decision process. This formulation has, however, not led to particularly efficient algorithms so far, since computing the associated DP operators requires fully solving a static optimal transport problem, and these operators need to be applied numerous times during the overall optimization process. In this work, we develop an alternative perspective by considering couplings between a "flattened" version of the joint distributions that we call discounted occupancy couplings, and show that calculating optimal transport distances in the full space of joint distributions can be equivalently formulated as solving a linear program (LP) in this reduced space. This LP formulation allows us to port several algorithmic ideas from other areas of optimal transport theory. In particular, our formulation makes it possible to introduce an appropriate notion of entropy regularization into the optimization problem, which in turn enables us to directly calculate optimal transport distances via a Sinkhorn-like method we call Sinkhorn Value Iteration (SVI). We show both theoretically and empirically that this method converges quickly to an optimal coupling, essentially at the same computational cost of running vanilla Sinkhorn in each pair of states. Along the way, we point out that our optimal transport distance exactly matches the common notion of bisimulation metrics between Markov chains, and thus our results also apply to computing such metrics, and in fact our algorithm turns out to be significantly more efficient than the best known methods developed so far for this purpose.


Kernel PCA for Out-of-Distribution Detection Kun Fang 1 Qinghua Tao 2 Kexin Lv3 Mingzhen He

Neural Information Processing Systems

Out-of-Distribution (OoD) detection is vital for the reliability of Deep Neural Networks (DNNs). Existing works have shown the insufficiency of Principal Component Analysis (PCA) straightforwardly applied on the features of DNNs in detecting OoD data from In-Distribution (InD) data. The failure of PCA suggests that the network features residing in OoD and InD are not well separated by simply proceeding in a linear subspace, which instead can be resolved through proper non-linear mappings. In this work, we leverage the framework of Kernel PCA (KPCA) for OoD detection, and seek suitable non-linear kernels that advocate the separability between InD and OoD data in the subspace spanned by the principal components. Besides, explicit feature mappings induced from the devoted taskspecific kernels are adopted so that the KPCA reconstruction error for new test samples can be efficiently obtained with large-scale data. Extensive theoretical and empirical results on multiple OoD data sets and network structures verify the superiority of our KPCA detector in efficiency and efficacy with state-of-the-art detection performance.