Well File:


Direct Preference-based Policy Optimization without Reward Modeling

Neural Information Processing Systems

Preference-based reinforcement learning (PbRL) is an approach that enables RL agents to learn from preference, which is particularly useful when formulating a reward function is challenging. Existing PbRL methods generally involve a two-step procedure: they first learn a reward model based on given preference data and then employ off-the-shelf reinforcement learning algorithms using the learned reward model. However, obtaining an accurate reward model solely from preference information, especially when the preference is from human teachers, can be difficult. Instead, we propose a PbRL algorithm that directly learns from preference without requiring any reward modeling. To achieve this, we adopt a contrastive learning framework to design a novel policy scoring metric that assigns a high score to policies that align with the given preferences. We apply our algorithm to offline RL tasks with actual human preference labels and show that our algorithm outperforms or is on par with the existing PbRL methods. Notably, on high-dimensional control tasks, our algorithm surpasses offline RL methods that learn with ground-truth reward information. Finally, we show that our algorithm can be successfully applied to fine-tune large language models.


A Supplementary Material

Neural Information Processing Systems

In the supplementary material, we provide additional information and details in A.1. This section covers the introduction of data, key parameter settings, comparisons with baselines, optimization methods, and the algorithm process of our method. Furthermore, A.2 presents supplementary experiments for our model, including visualization experiments and replication studies. Additionally, we discuss the reasons behind utilizing hypergraphs as the temporal encoder in A.3. Finally, the limitations and broader impacts of our work are discussed in A.4. A.1 Data and Implementation Details Data. The statistical information of the aforementioned four real-world datasets is presented in Table 4.




Low-shot Object Learning with Mutual Exclusivity Bias 2

Neural Information Processing Systems

This paper introduces Low-shot Object Learning with Mutual Exclusivity Bias (LSME), the first computational framing of mutual exclusivity bias, a phenomenon commonly observed in infants during word learning. We provide a novel dataset, comprehensive baselines, and a state-of-the-art method to enable the ML community to tackle this challenging learning task. The goal of LSME is to analyze an RGB image of a scene containing multiple objects and correctly associate a previously-unknown object instance with a provided category label. This association is then used to perform low-shot learning to test category generalization. We provide a data generation pipeline for the LSME problem and conduct a thorough analysis of the factors that contribute to its difficulty. Additionally, we evaluate the performance of multiple baselines, including state-of-the-art foundation models. Finally, we present a baseline approach that outperforms state-of-the-art models in terms of low-shot accuracy. Code and data are available at https://github.com/rehglab/LSME.


ADGym: Design Choices for Deep Anomaly Detection

Neural Information Processing Systems

Deep learning (DL) techniques have recently found success in anomaly detection (AD) across various fields such as finance, medical services, and cloud computing. However, most of the current research tends to view deep AD algorithms as a whole, without dissecting the contributions of individual design choices like loss functions and network architectures. This view tends to diminish the value of preliminary steps like data preprocessing, as more attention is given to newly designed loss functions, network architectures, and learning paradigms. In this paper, we aim to bridge this gap by asking two key questions: (i) Which design choices in deep AD methods are crucial for detecting anomalies?


ADGym: Design Choices for Deep Anomaly Detection

Neural Information Processing Systems

Deep learning (DL) techniques have recently found success in anomaly detection (AD) across various fields such as finance, medical services, and cloud computing. However, most of the current research tends to view deep AD algorithms as a whole, without dissecting the contributions of individual design choices like loss functions and network architectures. This view tends to diminish the value of preliminary steps like data preprocessing, as more attention is given to newly designed loss functions, network architectures, and learning paradigms. In this paper, we aim to bridge this gap by asking two key questions: (i) Which design choices in deep AD methods are crucial for detecting anomalies?


From Trainable Negative Depth to Edge Heterophily in Graphs

Neural Information Processing Systems

Finding the proper depth d of a graph convolutional network (GCN) that provides strong representation ability has drawn significant attention, yet nonetheless largely remains an open problem for the graph learning community. Although noteworthy progress has been made, the depth or the number of layers of a corresponding GCN is realized by a series of graph convolution operations, which naturally makes d a positive integer (d N+). An interesting question is whether breaking the constraint of N+ by making d a real number (d R) can bring new insights into graph learning mechanisms. In this work, by redefining GCN's depth d as a trainable parameter continuously adjustable within (, +), we open a new door of controlling its signal processing capability to model graph homophily/heterophily (nodes with similar/dissimilar labels/attributes tend to be inter-connected).