Goto

Collaborating Authors

 Technology


Neural Architecture

Neural Information Processing Systems

While we are waiting for the ultimate biophysics of cell membranes and synapses to be completed, we may speculate on the shapes of neurons and on the patterns of their connections. Much of this will be significant whatever the outcome of future physiology. Take as an example the isotropy, anisotropy and periodicity of different kinds of neural networks. The very existence of these different types in different parts of the brain (or in different brains) defeats explanation in terms of embryology; the mechanisms of development are able to make one kind of network or another. The reasons for the difference must be in the functions they perform.


A Network for Image Segmentation Using Color

Neural Information Processing Systems

Otherwise it might ascribe different characteristics to the same object under different lights. But the first step in using color for recognition, segmenting the scene into regions of different colors, does not require color constancy.


A Connectionist Expert System that Actually Works

Neural Information Processing Systems

ABSTRACf The Space Environment Laboratory in Boulder has collaborated with the University of Colorado to construct a small expert system for solar flare forecasting, called THEa. It performed as well as a skilled human forecaster. We have constructed TheoNet, a three-layer back-propagation connectionist network that learns to forecast flares as well as THEa does. TheoNet's success suggests that a connectionist network can perform the task of knowledge engineering automatically. A study of the internal representations constructed by the network may give insights to the "microstructure" of reasoning processes in the human brain.


Training a Limited-Interconnect, Synthetic Neural IC

Neural Information Processing Systems

Hardware implementation of neuromorphic algorithms is hampered by high degrees of connectivity. Functionally equivalent feedforward networks may be formed by using limited fan-in nodes and additional layers.


Constraints on Adaptive Networks for Modeling Human Generalization

Neural Information Processing Systems

CA 94305 ABSTRACT The potential of adaptive networks to learn categorization rules and to model human performance is studied by comparing how natural and artificial systems respond to new inputs, i.e., how they generalize. Like humans, networks can learn a detenninistic categorization task by a variety of alternative individual solutions. An analysis of the constraints imposed by using networks with the minimal number of hidden units shows that this "minimal configuration" constraint is not sufficient A further analysis of human and network generalizations indicates that initial conditions may provide important constraints on generalization. A new technique, which we call "reversed learning", is described for finding appropriate initial conditions. INTRODUCTION We are investigating the potential of adaptive networks to learn categorization tasks and to model human performance.


Learning by Choice of Internal Representations

Neural Information Processing Systems

We introduce a learning algorithm for multilayer neural networks composed of binary linear threshold elements. Whereas existing algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations as the fundamental entities to be determined. Once a correct set of internal representations is arrived at, the weights are found by the local aild biologically plausible Perceptron Learning Rule (PLR). We tested our learning algorithm on four problems: adjacency, symmetry, parity and combined symmetry-parity.


Fast Learning in Multi-Resolution Hierarchies

Neural Information Processing Systems

A variety of approaches to adaptive information processing have been developed by workers in disparate disciplines. These include the large body of literature on approximation and interpolation techniques (curve and surface fitting), the linear, real-time adaptive signal processing systems (such as the adaptive linear combiner and the Kalman filter), and most recently, the reincarnation of nonlinear neural network models such as the multilayer perceptron. Each of these methods has its strengths and weaknesses. The curve and surface fitting techniques are excellent for off-line data analysis, but are typically not formulated with real-time applications in mind. The linear techniques of adaptive signal processing and adaptive control are well-characterized, but are limited to applications for which linear descriptions are appropriate. Finally, neural network learning models such as back propagation have proven extremely versatile at learning a wide variety of nonlinear mappings, but tend to be very slow computationally and are not yet well characterized.


Use of Multi-Layered Networks for Coding Speech with Phonetic Features

Neural Information Processing Systems

A method that combines expertise on neural networks with expertise on speech recognition is used to build the recognition systems. For transient sounds, eventdriven property extractors with variable resolution in the time and frequency domains are used. For sonorant speech, a model of the human auditory system is preferred to FFT as a front-end module. INTRODUCTION Combining a structural or knowledge-based approach for describing speech units with neural networks capable of automatically learning relations between acoustic properties and speech units is the research effort we are attempting.



Neural Net Receivers in Multiple Access-Communications

Neural Information Processing Systems

The application of neural networks to the demodulation of spread-spectrum signals in a multiple-access environment is considered. This study is motivated in large part by the fact that, in a multiuser system, the conventional (matched ter) fil receiver suffers severe performance degradation as the relative powers of the interfering signals become large (the "near-far" problem). Furthermore, the optimum receiver, which alleviates the near-far problem, is too complex to be of practical use. Receivers based on multi-layer perceptrons are considered as a simple and robust alternative to the optimum solution. The optimum receiver is used to benchmark the performance of the neural net receiver; in particular, it is proven to be instrumental in identifying the decision regions of the neural networks. The back-propagation algorithm and a modified version of it are used to train the neural net. An importance sampling technique is introduced to reduce the number of simulations necessary to evaluate the performance of neural nets.