Goto

Collaborating Authors

 Technology


Neural Network Based Model Predictive Control

Neural Information Processing Systems

Model Predictive Control was developed in the late 70's and came into widespread use, particularly in the refining industry, in the 80's. The economic benefit of this approach to control has been documented [1,2].


Dual Estimation and the Unscented Transformation

Neural Information Processing Systems

Dual estimation refers to the problem of simultaneously estimating the state of a dynamic system and the model which gives rise to the dynamics. Algorithms include expectation-maximization (EM), dual Kalman filtering, and joint Kalman methods. These methods have recently been explored in the context of nonlinear modeling, where a neural network is used as the functional form of the unknown model. Typically, an extended Kalman filter (EKF) or smoother is used for the part of the algorithm that estimates the clean state given the current estimated model. An EKF may also be used to estimate the weights of the network. This paper points out the flaws in using the EKF, and proposes an improvement based on a new approach called the unscented transformation (UT) [3]. A substantial performance gain is achieved with the same order of computational complexity as that of the standard EKF. The approach is illustrated on several dual estimation methods.


Bayesian Reconstruction of 3D Human Motion from Single-Camera Video

Neural Information Processing Systems

The three-dimensional motion of humans is underdetermined when the observation is limited to a single camera, due to the inherent 3D ambiguity of 2D video. We present a system that reconstructs the 3D motion of human subjects from single-camera video, relying on prior knowledge about human motion, learned from training data, to resolve those ambiguities. After initialization in 2D, the tracking and 3D reconstruction is automatic; we show results for several video sequences. The results show the power of treating 3D body tracking as an inference problem.


Large Margin DAGs for Multiclass Classification

Neural Information Processing Systems

We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifier. For an N -class problem, the DDAG contains N(N - 1)/2 classifiers, one for each pair of classes. We present a VC analysis of the case when the node classifiers are hyperplanes; the resulting bound on the test error depends on N and on the margin achieved at the nodes, but not on the dimension of the space. This motivates an algorithm, DAGSVM, which operates in a kernel-induced feature space and uses two-class maximal margin hyperplanes at each decision-node of the DDAG. The DAGSVM is substantially faster to train and evaluate than either the standard algorithm or Max Wins, while maintaining comparable accuracy to both of these algorithms. 1 Introduction The problem of multiclass classificatIon, especially for systems like SVMs, doesn't present an easy solution. It is generally simpler to construct classifier theory and algorithms for two mutually-exclusive classes than for N mutually-exclusive classes.


Robust Recognition of Noisy and Superimposed Patterns via Selective Attention

Neural Information Processing Systems

In many classification tasks, recognition accuracy is low because input patterns are corrupted by noise or are spatially or temporally overlapping. We propose an approach to overcoming these limitations based on a model of human selective attention. The model, an early selection filter guided by top-down attentional control, entertains each candidate output class in sequence and adjusts attentional gain coefficients in order to produce a strong response for that class. The chosen class is then the one that obtains the strongest response with the least modulation of attention. We present simulation results on classification of corrupted and superimposed handwritten digit patterns, showing a significant improvement in recognition rates.


Robust Learning of Chaotic Attractors

Neural Information Processing Systems

A fundamental problem with the modeling of chaotic time series data is that minimizing short-term prediction errors does not guarantee a match between the reconstructed attractors of model and experiments. We introduce a modeling paradigm that simultaneously learns to short-tenn predict and to locate the outlines of the attractor by a new way of nonlinear principal component analysis. Closed-loop predictions are constrained to stay within these outlines, to prevent divergence from the attractor. Learning is exceptionally fast: parameter estimation for the 1000 sample laser data from the 1991 Santa Fe time series competition took less than a minute on a 166 MHz Pentium PC.


Differentiating Functions of the Jacobian with Respect to the Weights

Neural Information Processing Systems

For many problems, the correct behavior of a model depends not only on its input-output mapping but also on properties of its Jacobian matrix, the matrix of partial derivatives of the model's outputs with respect to its inputs. We introduce the J-prop algorithm, an efficient general method for computing the exact partial derivatives of a variety of simple functions of the Jacobian of a model with respect to its free parameters. The algorithm applies to any parametrized feedforward model, including nonlinear regression, multilayer perceptrons, and radial basis function networks.


Scale Mixtures of Gaussians and the Statistics of Natural Images

Neural Information Processing Systems

The statistics of photographic images, when represented using multiscale (wavelet) bases, exhibit two striking types of non Gaussian behavior. First, the marginal densities of the coefficients have extended heavy tails. Second, the joint densities exhibit variance dependencies not captured by second-order models. We examine properties of the class of Gaussian scale mixtures, and show that these densities can accurately characterize both the marginal and joint distributions of natural image wavelet coefficients. This class of model suggests a Markov structure, in which wavelet coefficients are linked by hidden scaling variables corresponding to local image structure. We derive an estimator for these hidden variables, and show that a nonlinear "normalization" procedure can be used to Gaussianize the coefficients.


Emergence of Topography and Complex Cell Properties from Natural Images using Extensions of ICA

Neural Information Processing Systems

Independent component analysis of natural images leads to emergence of simple cell properties, Le. linear filters that resemble wavelets or Gabor functions. In this paper, we extend ICA to explain further properties of VI cells.


Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks

Neural Information Processing Systems

The curse of dimensionality is severe when modeling high-dimensional discrete data: the number of possible combinations of the variables explodes exponentially. In this paper we propose a new architecture for modeling high-dimensional data that requires resources (parameters and computations) that grow only at most as the square of the number of variables, using a multi-layer neural network to represent the joint distribution of the variables as the product of conditional distributions. The neural network can be interpreted as a graphical model without hidden random variables, but in which the conditional distributions are tied through the hidden units. The connectivity of the neural network can be pruned by using dependency tests between the variables. Experiments on modeling the distribution of several discrete data sets show statistically significant improvements over other methods such as naive Bayes and comparable Bayesian networks, and show that significant improvements can be obtained by pruning the network. 1 Introduction The curse of dimensionality hits particularly hard on models of high-dimensional discrete data because there are many more possible combinations of the values of the variables than can possibly be observed in any data set, even the large data sets now common in datamining applications.