Not enough data to create a plot.
Try a different view from the menu above.
Technology
Learning the Past Tense of English Verbs: The Symbolic Pattern Associator vs. Connectionist Models
Learning the past tense of English verbs - a seemingly minor aspect of language acquisition - has generated heated debates since 1986, and has become a landmark task for testing the adequacy of cognitive modeling. Several artificial neural networks (ANNs) have been implemented, and a challenge for better symbolic models has been posed. In this paper, we present a general-purpose Symbolic Pattern Associator (SPA) based upon the decision-tree learning algorithm ID3. We conduct extensive head-to-head comparisons on the generalization ability between ANN models and the SPA under different representations. We conclude that the SPA generalizes the past tense of unseen verbs better than ANN models by a wide margin, and we offer insights as to why this should be the case. We also discuss a new default strategy for decision-tree learning algorithms.
Substructure Discovery Using Minimum Description Length and Background Knowledge
The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our SUBDUE substructure discovery system based on the minimum description length principle. The SUBDUE system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previously-discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical description of the structural regularities in the data. SUBDUE uses a computationally-bounded inexact graph match that identifies similar, but not identical, instances of a substructure and finds an approximate measure of closeness of two substructures when under computational constraints. In addition to the minimum description length principle, other background knowledge can be used by SUBDUE to guide the search towards more appropriate substructures. Experiments in a variety of domains demonstrate SUBDUE's ability to find substructures capable of compressing the original data and to discover structural concepts important to the domain. Description of Online Appendix: This is a compressed tar file containing the SUBDUE discovery system, written in C. The program accepts as input databases represented in graph form, and will output discovered substructures with their corresponding value.
Bias-Driven Revision of Logical Domain Theories
Koppel, M., Feldman, R., Segre, A. M.
The theory revision problem is the problem of how best to go about revising a deficient domain theory using information contained in examples that expose inaccuracies. In this paper we present our approach to the theory revision problem for propositional domain theories. The approach described here, called PTR, uses probabilities associated with domain theory elements to numerically track the ``flow'' of proof through the theory. This allows us to measure the precise role of a clause or literal in allowing or preventing a (desired or undesired) derivation for a given example. This information is used to efficiently locate and repair flawed elements of the theory. PTR is proved to converge to a theory which correctly classifies all examples, and shown experimentally to be fast and accurate even for deep theories.
The Role of Experimentation in Artificial Intelligence
Phil. Trans. R. Soc. Lond. A. 1994 349 1689. Intelligence is a complex, natural phenomenon exhibited by humans and many other living things, without sharply defined boundaries between intelligent and unintelligent behaviour. Artificial inteliigence focuses on the phenomenon of intelligent behaviour, in humans or machines. Experimentation with computer programs allows us to manipulate their design and intervene in the environmental conditions in ways that are not possible with humans. Thus, experimentation can help us to understand what principles govern intelligent action and what mechanisms are sufficient for computers to replicate intelligent behaviours.
Teleo-Reactive Programs for Agent Control
A formalism is presented for computing and organizing actions for autonomous agents in dynamic environments. We introduce the notion of teleo-reactive (T-R) programs whose execution entails the construction of circuitry for the continuous computation of the parameters and conditions on which agent action is based. In addition to continuous feedback, T-R programs support parameter binding and recursion. A primary difference between T-R programs and many other circuit-based systems is that the circuitry of T-R programs is more compact; it is constructed at run time and thus does not have to anticipate all the contingencies that might arise over all possible runs. In addition, T-R programs are intuitive and easy to write and are written in a form that is compatible with automatic planning and learning methods. We briefly describe some experimental applications of T-R programs in the control of simulated and actual mobile robots.
A Neural Model of Descending Gain Control in the Electrosensory System
Certain species of freshwater tropical fish, known as weakly electric fish, possess an active electric sense that allows them to detect and discriminate objects in their environment using a self-generated electric field (Bullock and Heiligenberg, 1986). They detect objects by sensing small perturbations in this electric field using an array of specialized receptors, known as electroreceptors, that cover their body surface. Weaklyelectric fish often live in turbid water and tend to be nocturnal. These conditions, which hinder visual perception, do not adversely affect the electric sense. Hence the electrosensory system allows these fish to navigate and capture prey in total darkness in much the same way as the sonar system of echolocating bats allows them to do the same.
How Oscillatory Neuronal Responses Reflect Bistability and Switching of the Hidden Assembly Dynamics
Pawelzik, K., Bauer, H.-U., Deppisch, J., Geisel, T.
A switching between apparently coherent (oscillatory) and stochastic episodes of activity has been observed in responses from cat and monkey visual cortex. We describe the dynamics of these phenomena in two parallel approaches,a phenomenological and a rather microscopic one. On the one hand we analyze neuronal responses in terms of a hidden state model (HSM). The parameters of this model are extracted directly from experimental spiketrains. They characterize the underlying dynamics as well as the coupling of individual neurons to the network. This phenomenological modelthus provides a new framework for the experimental analysis of network dynamics.
Topography and Ocular Dominance with Positive Correlations
This is motivated by experimental evidencethat these phenomena may be subserved by the same mechanisms. An important aspect of this model is that ocular dominance segregationcan occur when input activity is both distributed, and positively correlated between the eyes. This allows investigation of the dependence of the pattern of ocular dominance stripes on the degree of correlation between the eyes: it is found that increasing correlation leads to narrower stripes. Experiments are suggested to test whether such behaviour occursin the natural system.
Improving Performance in Neural Networks Using a Boosting Algorithm
Drucker, Harris, Schapire, Robert, Simard, Patrice
A boosting algorithm converts a learning machine with error rate less than 50% to one with an arbitrarily low error rate. However, the algorithm discussed here depends on having a large supply of independent training samples. We show how to circumvent this problem and generate an ensemble of learning machines whose performance in optical character recognition problems is dramatically improved over that of a single network. We report the effect of boosting on four databases (all handwritten) consisting of 12,000 digits from segmented ZIP codes from the United State Postal Service (USPS) and the following from the National Institute of Standards and Testing (NIST): 220,000 digits, 45,000 upper case alphas, and 45,000 lower case alphas. We use two performance measures: the raw error rate (no rejects) and the reject rate required to achieve a 1% error rate on the patterns not rejected.
A Neural Model of Descending Gain Control in the Electrosensory System
Certain species of freshwater tropical fish, known as weakly electric fish, possess an active electric sense that allows them to detect and discriminate objects in their environment using a self-generated electric field (Bullock and Heiligenberg, 1986). They detect objects by sensing small perturbations in this electric field using an array of specialized receptors, known as electroreceptors, that cover their body surface. Weakly electric fish often live in turbid water and tend to be nocturnal. These conditions, which hinder visual perception, do not adversely affect the electric sense. Hence the electrosensory system allows these fish to navigate and capture prey in total darkness in much the same way as the sonar system of echolocating bats allows them to do the same.