Plotting

 Technology



Citcuits for VLSI Implementation of Temporally Asymmetric Hebbian Learning

Neural Information Processing Systems

Experimental data has shown that synaptic strength modification in some types of biological neurons depends upon precise spike timing differences between presynaptic and postsynaptic spikes. Several temporally-asymmetric Hebbian learning rules motivated by this data have been proposed. We argue that such learning rules are suitable to analog VLSI implementation. We describe an easily tunable circuit to modify the weight of a silicon spiking neuron according to those learning rules. Test results from the fabrication of the circuit using a O.6J.lm CMOS process are given.


Reducing multiclass to binary by coupling probability estimates

Neural Information Processing Systems

This paper presents a method for obtaining class membership probability estimates for multiclass classification problems by coupling the probability estimates produced by binary classifiers. This is an extension for arbitrary code matrices of a method due to Hastie and Tibshirani for pairwise coupling of probability estimates. Experimental results with Boosted Naive Bayes show that our method produces calibrated class membership probability estimates, while having similar classification accuracy as loss-based decoding, a method for obtaining the most likely class that does not generate probability estimates.


Escaping the Convex Hull with Extrapolated Vector Machines

Neural Information Processing Systems

Maximum margin classifiers such as Support Vector Machines (SVMs) critically depends upon the convex hulls of the training samples of each class, as they implicitly search for the minimum distance between the convex hulls. We propose Extrapolated Vector Machines (XVMs) which rely on extrapolations outside these convex hulls. XVMs improve SVM generalization very significantly on the MNIST [7] OCR data. They share similarities with the Fisher discriminant: maximize the inter-class margin while minimizing the intra-class disparity.


Grammatical Bigrams

Neural Information Processing Systems

Unsupervised learning algorithms have been derived for several statistical models of English grammar, but their computational complexity makes applying them to large data sets intractable. This paper presents a probabilistic model of English grammar that is much simpler than conventional models, but which admits an efficient EM training algorithm. The model is based upon grammatical bigrams, i.e., syntactic relationships between pairs of words. We present the results of experiments that quantify the representational adequacy of the grammatical bigram model, its ability to generalize from labelled data, and its ability to induce syntactic structure from large amounts of raw text. 1 Introduction One of the most significant challenges in learning grammars from raw text is keeping the computational complexity manageable. For example, the EM algorithm for the unsupervised training of Probabilistic Context-Free Grammars-known as the Inside-Outside algorithm-has been found in practice to be "computationally intractable for realistic problems" [1].


Analog Soft-Pattern-Matching Classifier using Floating-Gate MOS Technology

Neural Information Processing Systems

A flexible pattern-matching analog classifier is presented in conjunction with a robust image representation algorithm called Principal Axes Projection (PAP). In the circuit, the functional form of matching is configurable in terms of the peak position, the peak height and the sharpness of the similarity evaluation. The test chip was fabricated in a 0.6-µm CMOS technology and successfully applied to handwritten pattern recognition and medical radiograph analysis using PAP as a feature extraction pre-processing step for robust image coding. The separation and classification of overlapping patterns is also experimentally demonstrated.


Rao-Blackwellised Particle Filtering via Data Augmentation

Neural Information Processing Systems

SMC is often referred to as particle filtering (PF) in the context of computing filtering distributions for statistical inference and learning. It is known that the performance of PF often deteriorates in high-dimensional state spaces. In the past, we have shown that if a model admits partial analytical tractability, it is possible to combine PF with exact algorithms (Kalman filters, HMM filters, junction tree algorithm) to obtain efficient high dimensional filters (Doucet, de Freitas, Murphy and Russell 2000, Doucet, Godsill and Andrieu 2000). In particular, we exploited a marginalisation technique known as Rao-Blackwellisation (RB). Here, we attack a more complex model that does not admit immediate analytical tractability.


Grouping with Bias

Neural Information Processing Systems

In image segmentation, it means finding objects or object segments by clustering pixels and segregating them from background. It is often considered a bottom-up process. Although never explicitly stated, higher level of knowledge, such as familiar object shapes, is to be used only in a separate post-processing step. The need for the integration of prior knowledge arises in a number of applications. In computer vision, we would like image segmentation to correspond directly to object segmentation.


3 state neurons for contextual processing

Neural Information Processing Systems

Neurons receive excitatory inputs via both fast AMPA and slow NMDA type receptors. We find that neurons receiving input via NMDA receptors can have two stable membrane states which are input dependent. Action potentials can only be initiated from the higher voltage state. Similar observations have been made in several brain areas which might be explained by our model. The interactions between the two kinds of inputs lead us to suggest that some neurons may operate in 3 states: disabled, enabled and firing. Such enabled, but non-firing modes can be used to introduce context-dependent processing in neural networks. We provide a simple example and discuss possible implications for neuronal processing and response variability.


Relative Density Nets: A New Way to Combine Backpropagation with HMM's

Neural Information Processing Systems

Logistic units in the first hidden layer of a feedforward neural network compute the relative probability of a data point under two Gaussians. This leads us to consider substituting other density models. We present an architecture for performing discriminative learning of Hidden Markov Models using a network of many small HMM's. Experiments on speech data show it to be superior to the standard method of discriminatively training HMM's.