Plotting

 Technology


Model-Based Diagnosis under Real-World Constraints

AI Magazine

I report on my experience over the past few years in introducing automated, model-based diagnostic technologies into industrial settings. In partic-ular, I discuss the competition that this technology has been receiving from handcrafted, rule-based diagnostic systems that has set some high standards that must be met by model-based systems before they can be viewed as viable alternatives. The battle between model-based and rule-based approaches to diagnosis has been over in the academic literature for many years, but the situation is different in industry where rule-based systems are dominant and appear to be attractive given the considerations of efficiency, embeddability, and cost effectiveness. My goal in this article is to provide a perspective on this competition and discuss a diagnostic tool, called DTOOL/CNETS, that I have been developing over the years as I tried to address the major challenges posed by rule-based systems. In particular, I discuss three major features of the developed tool that were either adopted, designed, or innovated to address these challenges: (1) its compositional modeling approach, (2) its structure-based computational approach, and (3) its ability to synthesize embeddable diagnostic systems for a variety of software and hardware platforms.


An Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email

Journal of Artificial Intelligence Research

This paper describes a novel method by which a spoken dialogue system can learn to choose an optimal dialogue strategy from its experience interacting with human users. The method is based on a combination of reinforcement learning and performance modeling of spoken dialogue systems. The reinforcement learning component applies Q-learning (Watkins, 1989), while the performance modeling component applies the PARADISE evaluation framework (Walker et al., 1997) to learn the performance function (reward) used in reinforcement learning. We illustrate the method with a spoken dialogue system named ELVIS (EmaiL Voice Interactive System), that supports access to email over the phone. We conduct a set of experiments for training an optimal dialogue strategy on a corpus of 219 dialogues in which human users interact with ELVIS over the phone. We then test that strategy on a corpus of 18 dialogues. We show that ELVIS can learn to optimize its strategy selection for agent initiative, for reading messages, and for summarizing email folders.


Randomized Algorithms for the Loop Cutset Problem

Journal of Artificial Intelligence Research

We show how to find a minimum weight loop cutset in a Bayesian network with high probability. Finding such a loop cutset is the first step in the method of conditioning for inference. Our randomized algorithm for finding a loop cutset outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least 1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is the minimal size of a minimum weight loop cutset, and n is the number of vertices. We also show empirically that a variant of this algorithm often finds a loop cutset that is closer to the minimum weight loop cutset than the ones found by the best deterministic algorithms known.


On the Compilability and Expressive Power of Propositional Planning Formalisms

Journal of Artificial Intelligence Research

The recent approaches of extending the GRAPHPLAN algorithm to handle more expressive planning formalisms raise the question of what the formal meaning of ``expressive power'' is. We formalize the intuition that expressive power is a measure of how concisely planning domains and plans can be expressed in a particular formalism by introducing the notion of ``compilation schemes'' between planning formalisms. Using this notion, we analyze the expressiveness of a large family of propositional planning formalisms, ranging from basic STRIPS to a formalism with conditional effects, partial state specifications, and propositional formulae in the preconditions. One of the results is that conditional effects cannot be compiled away if plan size should grow only linearly but can be compiled away if we allow for polynomial growth of the resulting plans. This result confirms that the recently proposed extensions to the GRAPHPLAN algorithm concerning conditional effects are optimal with respect to the ``compilability'' framework. Another result is that general propositional formulae cannot be compiled into conditional effects if the plan size should be preserved linearly. This implies that allowing general propositional formulae in preconditions and effect conditions adds another level of difficulty in generating a plan.


Axiomatizing Causal Reasoning

Journal of Artificial Intelligence Research

Causal models defined in terms of a collection of equations, as defined by Pearl, are axiomatized here. Axiomatizations are provided for three successively more general classes of causal models: (1) the class of recursive theories (those without feedback), (2) the class of theories where the solutions to the equations are unique, (3) arbitrary theories (where the equations may not have solutions and, if they do, they are not necessarily unique). It is shown that to reason about causality in the most general third class, we must extend the language used by Galles and Pearl (1997, 1998). In addition, the complexity of the decision procedures is characterized for all the languages and classes of models considered.


The Complexity of Reasoning with Cardinality Restrictions and Nominals in Expressive Description Logics

Journal of Artificial Intelligence Research

We study the complexity of the combination of the Description Logics ALCQ and ALCQI with a terminological formalism based on cardinality restrictions on concepts. These combinations can naturally be embedded into C^2, the two variable fragment of predicate logic with counting quantifiers, which yields decidability in NExpTime. We show that this approach leads to an optimal solution for ALCQI, as ALCQI with cardinality restrictions has the same complexity as C^2 (NExpTime-complete). In contrast, we show that for ALCQ, the problem can be solved in ExpTime. This result is obtained by a reduction of reasoning with cardinality restrictions to reasoning with the (in general weaker) terminological formalism of general axioms for ALCQ extended with nominals. Using the same reduction, we show that, for the extension of ALCQI with nominals, reasoning with general axioms is a NExpTime-complete problem. Finally, we sharpen this result and show that pure concept satisfiability for ALCQI with nominals is NExpTime-complete. Without nominals, this problem is known to be PSpace-complete.


Backbone Fragility and the Local Search Cost Peak

Journal of Artificial Intelligence Research

The local search algorithm WSat is one of the most successful algorithms for solving the satisfiability (SAT) problem. It is notably effective at solving hard Random 3-SAT instances near the so-called `satisfiability threshold', but still shows a peak in search cost near the threshold and large variations in cost over different instances. We make a number of significant contributions to the analysis of WSat on high-cost random instances, using the recently-introduced concept of the backbone of a SAT instance. The backbone is the set of literals which are entailed by an instance. We find that the number of solutions predicts the cost well for small-backbone instances but is much less relevant for the large-backbone instances which appear near the threshold and dominate in the overconstrained region. We show a very strong correlation between search cost and the Hamming distance to the nearest solution early in WSat's search. This pattern leads us to introduce a measure of the backbone fragility of an instance, which indicates how persistent the backbone is as clauses are removed. We propose that high-cost random instances for local search are those with very large backbones which are also backbone-fragile. We suggest that the decay in cost beyond the satisfiability threshold is due to increasing backbone robustness (the opposite of backbone fragility). Our hypothesis makes three correct predictions. First, that the backbone robustness of an instance is negatively correlated with the local search cost when other factors are controlled for. Second, that backbone-minimal instances (which are 3-SAT instances altered so as to be more backbone-fragile) are unusually hard for WSat. Third, that the clauses most often unsatisfied during search are those whose deletion has the most effect on the backbone. In understanding the pathologies of local search methods, we hope to contribute to the development of new and better techniques.


A Theory of Universal Artificial Intelligence based on Algorithmic Complexity

arXiv.org Artificial Intelligence

Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental prior probability distribution is known. Solomonoff's theory of universal induction formally solves the problem of sequence prediction for unknown prior distribution. We combine both ideas and get a parameterless theory of universal Artificial Intelligence. We give strong arguments that the resulting AIXI model is the most intelligent unbiased agent possible. We outline for a number of problem classes, including sequence prediction, strategic games, function minimization, reinforcement and supervised learning, how the AIXI model can formally solve them. The major drawback of the AIXI model is that it is uncomputable. To overcome this problem, we construct a modified algorithm AIXI-tl, which is still effectively more intelligent than any other time t and space l bounded agent. The computation time of AIXI-tl is of the order tx2^l. Other discussed topics are formal definitions of intelligence order relations, the horizon problem and relations of the AIXI theory to other AI approaches.


Representation results for defeasible logic

arXiv.org Artificial Intelligence

Normal forms play an important role in computer science. Examples of areas where normal forms have proved fruitful include logic, where normal forms of formulae are used both for the proof of theoretical results and in automated theorem proving, and relational databases [7], where normal forms have been the driving force in the development of database theory and principles of good data modelling. In computer science, usually normal forms are supported by transformations, operational procedures that transform initial objects (such as programs or logical theories) to their normal form. Such transformations are important for two main reasons: 1. They support the understanding and assimilation of new concepts because they allow one to concentrate on certain forms and key features only. Thus transformations can be useful as theoretical tools.