Plotting

 Technology


Tetravex is NP-complete

arXiv.org Artificial Intelligence

Tetravex is a widely played one person computer game in which you are given $n^2$ unit tiles, each edge of which is labelled with a number. The objective is to place each tile within a $n$ by $n$ square such that all neighbouring edges are labelled with an identical number. Unfortunately, playing Tetravex is computationally hard. More precisely, we prove that deciding if there is a tiling of the Tetravex board is NP-complete. Deciding where to place the tiles is therefore NP-hard. This may help to explain why Tetravex is a good puzzle. This result compliments a number of similar results for one person games involving tiling. For example, NP-completeness results have been shown for: the offline version of Tetris, KPlumber (which involves rotating tiles containing drawings of pipes to make a connected network), and shortest sliding puzzle problems. It raises a number of open questions. For example, is the infinite version Turing-complete? How do we generate Tetravex problems which are truly puzzling as random NP-complete problems are often surprising easy to solve? Can we observe phase transition behaviour? What about the complexity of the problem when it is guaranteed to have an unique solution? How do we generate puzzles with unique solutions?


Complexity of Terminating Preference Elicitation

arXiv.org Artificial Intelligence

Complexity theory is a useful tool to study computational issues surrounding the elicitation of preferences, as well as the strategic manipulation of elections aggregating together preferences of multiple agents. We study here the complexity of determining when we can terminate eliciting preferences, and prove that the complexity depends on the elicitation strategy. We show, for instance, that it may be better from a computational perspective to elicit all preferences from one agent at a time than to elicit individual preferences from multiple agents. We also study the connection between the strategic manipulation of an election and preference elicitation. We show that what we can manipulate affects the computational complexity of manipulation. In particular, we prove that there are voting rules which are easy to manipulate if we can change all of an agent's vote, but computationally intractable if we can change only some of their preferences. This suggests that, as with preference elicitation, a fine-grained view of manipulation may be informative. Finally, we study the connection between predicting the winner of an election and preference elicitation. Based on this connection, we identify a voting rule where it is computationally difficult to decide the probability of a candidate winning given a probability distribution over the votes.


Stochastic Constraint Programming

arXiv.org Artificial Intelligence

To model combinatorial decision problems involving uncertainty and probability, we introduce stochastic constraint programming. Stochastic constraint programs contain both decision variables (which we can set) and stochastic variables (which follow a probability distribution). They combine together the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. We give a semantics for stochastic constraint programs, and propose a number of complete algorithms and approximation procedures. Finally, we discuss a number of extensions of stochastic constraint programming to relax various assumptions like the independence between stochastic variables, and compare with other approaches for decision making under uncertainty.


The Complexity of Reasoning with Global Constraints

arXiv.org Artificial Intelligence

Constraint propagation is one of the techniques central to the success of constraint programming. To reduce search, fast algorithms associated with each constraint prune the domains of variables. With global (or non-binary) constraints, the cost of such propagation may be much greater than the quadratic cost for binary constraints. We therefore study the computational complexity of reasoning with global constraints. We first characterise a number of important questions related to constraint propagation. We show that such questions are intractable in general, and identify dependencies between the tractability and intractability of the different questions. We then demonstrate how the tools of computational complexity can be used in the design and analysis of specific global constraints. In particular, we illustrate how computational complexity can be used to determine when a lesser level of local consistency should be enforced, when constraints can be safely generalized, when decomposing constraints will reduce the amount of pruning, and when combining constraints is tractable.


Modeling the Experience of Emotion

arXiv.org Artificial Intelligence

Affective computing has proven to be a viable field of research comprised of a large number of multidisciplinary researchers resulting in work that is widely published. The majority of this work consists of computational models of emotion recognition, computational modeling of causal factors of emotion and emotion expression through rendered and robotic faces. A smaller part is concerned with modeling the effects of emotion, formal modeling of cognitive appraisal theory and models of emergent emotions. Part of the motivation for affective computing as a field is to better understand emotional processes through computational modeling. One of the four major topics in affective computing is computers that have emotions (the others are recognizing, expressing and understanding emotions). A critical and neglected aspect of having emotions is the experience of emotion (Barrett, Mesquita, Ochsner, and Gross, 2007): what does the content of an emotional episode look like, how does this content change over time and when do we call the episode emotional. Few modeling efforts have these topics as primary focus. The launch of a journal on synthetic emotions should motivate research initiatives in this direction, and this research should have a measurable impact on emotion research in psychology. I show that a good way to do so is to investigate the psychological core of what an emotion is: an experience. I present ideas on how the experience of emotion could be modeled and provide evidence that several computational models of emotion are already addressing the issue.


Tagging multimedia stimuli with ontologies

arXiv.org Artificial Intelligence

Successful management of emotional stimuli is a pivotal issue concerning Affective Computing (AC) and the related research. As a subfield of Artificial Intelligence, AC is concerned not only with the design of computer systems and the accompanying hardware that can recognize, interpret, and process human emotions, but also with the development of systems that can trigger human emotional response in an ordered and controlled manner. This requires the maximum attainable precision and efficiency in the extraction of data from emotionally annotated databases While these databases do use keywords or tags for description of the semantic content, they do not provide either the necessary flexibility or leverage needed to efficiently extract the pertinent emotional content. Therefore, to this extent we propose an introduction of ontologies as a new paradigm for description of emotionally annotated data. The ability to select and sequence data based on their semantic attributes is vital for any study involving metadata, semantics and ontological sorting like the Semantic Web or the Social Semantic Desktop, and the approach described in the paper facilitates reuse in these areas as well.


Breaking Value Symmetry

arXiv.org Artificial Intelligence

Symmetry is an important factor in solving many constraint satisfaction problems. One common type of symmetry is when we have symmetric values. In a recent series of papers, we have studied methods to break value symmetries. Our results identify computational limits on eliminating value symmetry. For instance, we prove that pruning all symmetric values is NP-hard in general. Nevertheless, experiments show that much value symmetry can be broken in practice. These results may be useful to researchers in planning, scheduling and other areas as value symmetry occurs in many different domains.


Online Estimation of SAT Solving Runtime

arXiv.org Artificial Intelligence

We present an online method for estimating the cost of solving SAT problems. Modern SAT solvers present several challenges to estimate search cost including non-chronological backtracking, learning and restarts. Our method uses a linear model trained on data gathered at the start of search. We show the effectiveness of this method using random and structured problems. We demonstrate that predictions made in early restarts can be used to improve later predictions. We also show that we can use such cost estimations to select a solver from a portfolio.


SLIDE: A Useful Special Case of the CARDPATH Constraint

arXiv.org Artificial Intelligence

We study the CardPath constraint. This ensures a given constraint holds a number of times down a sequence of variables. We show that SLIDE, a special case of CardPath where the slid constraint must hold always, can be used to encode a wide range of sliding sequence constraints including CardPath itself. We consider how to propagate SLIDE and provide a complete propagator for CardPath. Since propagation is NP-hard in general, we identify special cases where propagation takes polynomial time. Our experiments demonstrate that using SLIDE to encode global constraints can be as efficient and effective as specialised propagators.


The Parameterized Complexity of Global Constraints

arXiv.org Artificial Intelligence

We argue that parameterized complexity is a useful tool with which to study global constraints. In particular, we show that many global constraints which are intractable to propagate completely have natural parameters which make them fixed-parameter tractable and which are easy to compute. This tractability tends either to be the result of a simple dynamic program or of a decomposition which has a strong backdoor of bounded size. This strong backdoor is often a cycle cutset. We also show that parameterized complexity can be used to study other aspects of constraint programming like symmetry breaking. For instance, we prove that value symmetry is fixed-parameter tractable to break in the number of symmetries. Finally, we argue that parameterized complexity can be used to derive results about the approximability of constraint propagation.