Plotting

 Information Technology


AAAI 2000 Conference Summary

AI Magazine

Based Search," by Peter Clark, John Thompson, Heather Holmback, and Lizbeth Duncan of the Boeing Co., demonstrated a concept-based search engine using an AI thesaurus with unambiguous control terms and relationships for ontology links for finding relevance when searching for human experts in the field.


The Fifth International Conference on Artificial Intelligence Planning and Scheduling

AI Magazine

The Fifth International Conference on Artificial Intelligence Planning and Scheduling (AIPS 2000) was held on 14-17 April 2000 at Breckenridge, Colorado; it was colocated with the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR2000). This conference brought together researchers working in all aspects of problems in planning, scheduling, planning and learning, and plan execution for dealing with complex problems.


The Road Ahead for Knowledge Management: An AI Perspective

AI Magazine

Enabling organizations to capture, share, and apply the collective experience and know-how of their people is seen as fundamental to competing in the knowledge economy. As a result, there has been a wave of enthusiasm and activity centered on knowledge management. To make progress in this area, issues of technology, process, people, and content must be addressed. In this article, we develop a road map for knowledge management. It begins with an assessment of the current state of the practice, using examples drawn from our experience at Schlumberger. It then sketches the possible evolution of technology and practice over a 10-year period. Along the way, we highlight ways in which AI technology, present and future, can be applied in knowledge management systems.


Stand-Allocation System (SAS): A Constraint-Based System Developed with Software Components

AI Magazine

In addition, to cope with conflicts caused by changes in actual operations, the airport authority also needs to make real-time problem-solving decisions on stand reassignments. the Hong Kong International Airport The stand-allocation system ( Figure world's busiest international airports in terms 1 is a snapshot of the The Although there were some initial hitches when system is installed and used in the Airport the new airport opened on 6 July 1998, operations Control Center (ACC), which is located in the quickly returned to normal within a control tower. Within a month, operational statistics management, and reactive scheduling capabilities surpassed those of the old airport--80 for stand management. The system supports percent of all flights were on time or within 15 concurrent use by multiple operators in minutes of schedule, all passengers cleared nonstop 24-hour-a-day operations because immigration within 15 minutes, and average HKIA is a 24-hour airport. Typically, a human operator must have several years of experience to acquire enough knowledge about airport operations before he/she can produce a "good" quality stand-assignment plan. Generating an allocation plan manually not only requires a highly experienced individual but is also very time consuming because it requires balancing many objectives against many possible alternatives.


Language, Vision, and Music: Report on the Eighth International Workshop on the Cognitive Science of Natural Language Processing (CSNLP-8)

AI Magazine

In science, business, and policymaking--anywhere data are used in prediction--two sorts of problems requiring very different methods of analysis often arise. The first, problems of recognition and classification, concerns learning how to use some features of a system to accurately predict other features of that system. The second, problems of causal discovery, concerns learning how to predict those changes to some features of a system that will result if an intervention changes other features. This book is about the second--much more difficult--type of problem. The contributors discuss recent research and applications using Bayes nets or directed graphic representations, including representations of feedback or "recursive" systems. The book contains a thorough discussion of foundational issues, algorithms, proof techniques, and applications to economics, physics, biology, educational research, and other areas. ISBN 0-262-57124-2 426 pp., bibliography, index Published by AAAI Press - http://www.aaai.org/Press/


Probabilistic Algorithms in Robotics

AI Magazine

This article describes a methodology for programming robots known as probabilistic robotics. The probabilistic paradigm pays tribute to the inherent uncertainty in robot perception, relying on explicit representations of uncertainty when determining what to do. This article surveys some of the progress in the field, using in-depth examples to illustrate some of the nuts and bolts of the basic approach. My central conjecture is that the probabilistic approach to robotics scales better to complex real-world applications than approaches that ignore a robot's uncertainty.


Ramp Activity Expert System for Scheduling and Coordination at an Airport

AI Magazine

In this project, we have developed the ramp activity coordination expert system (races) to solve aircraft-parking problems. races includes a knowledge-based scheduling system that assigns all daily arriving and departing flights to the gates and remote spots with domain-specific knowledge and heuristics acquired from human experts. races processes complex scheduling problems such as dynamic interrelations among the characteristics of remote spots-gates and aircraft with various other constraints, for example, customs and ground-handling factors, at an airport. By user-driven modeling for end users and near-optimal knowledge-driven scheduling acquired from human experts, races can produce parking schedules for about 400 daily flights in approximately 20 seconds; human experts normally take 4 to 5 hours to do the same. Scheduling results in the form of Gantt charts produced by races are also accepted by the domain experts. races is also designed to deal with the partial adjustment of the schedule when unexpected events occur. After daily scheduling is completed, the messages for aircraft change, and delay messages are reflected and updated into the schedule according to the knowledge of the domain experts. By analyzing the knowledge model of the domain expert, the reactive scheduling steps are effectively represented as the rules, and the scenarios of the graphic user interfaces are designed. Because the modification of the aircraft dispositions, such as aircraft changes and cancellations of flights, is reflected in the current schedule, the modification should be sent to races from the mainframe for the reactive scheduling. The adjustments of the schedule are made semiautomatically by races because there are many irregularities in dealing with the partial rescheduling.


Conformant Planning via Symbolic Model Checking

Journal of Artificial Intelligence Research

We tackle the problem of planning in nondeterministic domains, by presenting a new approach to conformant planning. Conformant planning is the problem of finding a sequence of actions that is guaranteed to achieve the goal despite the nondeterminism of the domain. Our approach is based on the representation of the planning domain as a finite state automaton. We use Symbolic Model Checking techniques, in particular Binary Decision Diagrams, to compactly represent and efficiently search the automaton. In this paper we make the following contributions. First, we present a general planning algorithm for conformant planning, which applies to fully nondeterministic domains, with uncertainty in the initial condition and in action effects. The algorithm is based on a breadth-first, backward search, and returns conformant plans of minimal length, if a solution to the planning problem exists, otherwise it terminates concluding that the problem admits no conformant solution. Second, we provide a symbolic representation of the search space based on Binary Decision Diagrams (BDDs), which is the basis for search techniques derived from symbolic model checking. The symbolic representation makes it possible to analyze potentially large sets of states and transitions in a single computation step, thus providing for an efficient implementation. Third, we present CMBP (Conformant Model Based Planner), an efficient implementation of the data structures and algorithm described above, directly based on BDD manipulations, which allows for a compact representation of the search layers and an efficient implementation of the search steps. Finally, we present an experimental comparison of our approach with the state-of-the-art conformant planners CGP, QBFPLAN and GPT. Our analysis includes all the planning problems from the distribution packages of these systems, plus other problems defined to stress a number of specific factors. Our approach appears to be the most effective: CMBP is strictly more expressive than QBFPLAN and CGP and, in all the problems where a comparison is possible, CMBP outperforms its competitors, sometimes by orders of magnitude.


Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition

Journal of Artificial Intelligence Research

This paper presents a new approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs. The decomposition, known as the MAXQ decomposition, has both a procedural semantics---as a subroutine hierarchy---and a declarative semantics---as a representation of the value function of a hierarchical policy. MAXQ unifies and extends previous work on hierarchical reinforcement learning by Singh, Kaelbling, and Dayan and Hinton. It is based on the assumption that the programmer can identify useful subgoals and define subtasks that achieve these subgoals. By defining such subgoals, the programmer constrains the set of policies that need to be considered during reinforcement learning. The MAXQ value function decomposition can represent the value function of any policy that is consistent with the given hierarchy. The decomposition also creates opportunities to exploit state abstractions, so that individual MDPs within the hierarchy can ignore large parts of the state space. This is important for the practical application of the method. This paper defines the MAXQ hierarchy, proves formal results on its representational power, and establishes five conditions for the safe use of state abstractions. The paper presents an online model-free learning algorithm, MAXQ-Q, and proves that it converges with probability 1 to a kind of locally-optimal policy known as a recursively optimal policy, even in the presence of the five kinds of state abstraction. The paper evaluates the MAXQ representation and MAXQ-Q through a series of experiments in three domains and shows experimentally that MAXQ-Q (with state abstractions) converges to a recursively optimal policy much faster than flat Q learning. The fact that MAXQ learns a representation of the value function has an important benefit: it makes it possible to compute and execute an improved, non-hierarchical policy via a procedure similar to the policy improvement step of policy iteration. The paper demonstrates the effectiveness of this non-hierarchical execution experimentally. Finally, the paper concludes with a comparison to related work and a discussion of the design tradeoffs in hierarchical reinforcement learning.


OBDD-based Universal Planning for Synchronized Agents in Non-Deterministic Domains

Journal of Artificial Intelligence Research

Recently model checking representation and search techniques were shown to be efficiently applicable to planning, in particular to non-deterministic planning. Such planning approaches use Ordered Binary Decision Diagrams (OBDDs) to encode a planning domain as a non-deterministic finite automaton and then apply fast algorithms from model checking to search for a solution. OBDDs can effectively scale and can provide universal plans for complex planning domains. We are particularly interested in addressing the complexities arising in non-deterministic, multi-agent domains. In this article, we present UMOP, a new universal OBDD-based planning framework for non-deterministic, multi-agent domains. We introduce a new planning domain description language, NADL, to specify non-deterministic, multi-agent domains. The language contributes the explicit definition of controllable agents and uncontrollable environment agents. We describe the syntax and semantics of NADL and show how to build an efficient OBDD-based representation of an NADL description. The UMOP planning system uses NADL and different OBDD-based universal planning algorithms. It includes the previously developed strong and strong cyclic planning algorithms. In addition, we introduce our new optimistic planning algorithm that relaxes optimality guarantees and generates plausible universal plans in some domains where no strong nor strong cyclic solution exists. We present empirical results applying UMOP to domains ranging from deterministic and single-agent with no environment actions to non-deterministic and multi-agent with complex environment actions. UMOP is shown to be a rich and efficient planning system.